霍尔传感器在大型发电机功率测量方面的应用

  摘要:文章分析了霍尔元件测量发电机输出功率的原理,并根据建立的数学模型设计霍尔元件测量交流电源功率的电路,通过理论计算确定所用元件参数(交流电源、交流磁场源电路设计)。根据软硬件的设计,做出了一个简单的测量装置。通过实验数据的处理以及误差分析,验证了本设计的合理性。

  关键词:霍尔元件;发电机;输出功率;交流磁场源

  0引言

  霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

  霍尔电流、电压传感器是近十几年发展起来的测量电流、电压的新一代工业用电量传感器,是一种新型的高性能电气检测元件。电网中,越来越多的负载采用电源变换器供电,用普通的功率计测量这类电能有点困难。例如发电机运行用的频率变换器就是把直流电压变换成频率自由选择的交流电压。根据电机的频率周期的变化,重复频率可以高达20kHz,脉冲宽度在l~5O微秒范围内。虽然电机的电流是连续的,但是由于电机是感性负载,故电机的电压是由许多高频脉冲电压组成的IS]。因此用普通的功率计不能测量脉宽调制的高频脉冲电压的有效值,采用霍尔效应元件的电流测量法。因为位于控制侧的霍尔效应元件具有把两个高频脉冲电量相乘的功能,只要再配上一定的放大器电路就能把结果显示出来日。

  1基本原理

  图1系统基本组成框图

  图1为霍尔式发电机功率测量系统基本原理框图。螺线管产生的磁场强度为:

  B=KbIL (1)

  霍尔元件的输出电压为:

  UH=KHIeB (2)

  把(1)式代入(2)式得:

  UH=KbKHILIeB (3)

  电机两端电压为:

  UL=KLIe (4)

  则:Ie=UL/RL (5)

  将(5)式代人(3)式得:

  UH=Kb/RLULILB (6)

  由(6)式得出:霍尔元件测得的输出电压UH与电机输出的功率ULIL成线性关系,从而实现负载消耗功率的测量。那么在正弦交流电路中,电压电流相量分别为UL,IL,它们之间相位差为φ,则:

  Ie=KbUlmsinwt (7)

  在负载上的电流为:

  ilm=ILMsin(wt+f) (8)

  其则在线圈上产生的垂直于霍尔元件的磁感应强度B可表示为:

  B=K1ILMsin(wt+f) (9)

  代入式(2)得:

  UH=KUlmILMcosφ-KUlmILMcos(2wt+φ)非(10)

  对上式求其平均值,得:

  UH=KUlmILMcosφ=KP (11)

  其中,K=KHKLKB,P=UIcosf为功率。因此只要测出了UH就可以计算出负载功率P。以上介绍的为一相的功率测量方法,对于三相电路,只需用三个和图l相同的电路进行分别测量,然后求三个测量值的和即可。

  2测量系统设计

  文章设计的功率测量系统主要以霍尔转换器和AT89S51为核心将电路中的电压电流乘积即电路消耗的电功率转化为霍尔元件的电势形式,通过测量霍尔元件的霍尔电势得到电路的电功率值,经过放大滤波、A/D转换等电路处理后,经单片机AT89551根据不同时段价格计算出所用电量并送到LCD上显示。系统包括霍尔元件传感器装置、微处理器、信号调理电路、A/D转换电路、LCD显示电路等。

  图2霍尔式发电机功率测量系统硬件框图

  单片机AT89C51在整个系统中将采集的A/D转换结果送入I/0口存储,通过对采集的数字信号进行计算出功率,并将结果送到LCD模块显示。单片机系统如图3所示。

  图3单片机AT89C51系统

  图4二阶有源低通滤波器

  信号调理电路由前置放大电路、低通滤波器、一阶同相放大器组成,如图4、5所示。图6为LCD显示电路,液晶显示模块采用EPSON点阵式EA—D20040模块。图7所示为A/D转换电路,文章采用美信ICL7135转换器芯片。

  图5一阶同相放大器

  图6EA—D20040与AT89S51接口电路

  图7A/D转换电路

  3霍尔传感器产品选型

  3.1产品介绍

  霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集和接受,响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强。适用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制。

  霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图2所示的半导体试样,若在X方向通以电流Is,在Z方向加磁场B,则在Y方向即试样A,A′电极两侧就开始聚积异号电荷而产生相应的附加电场。电场的指向取决定于测试样品的电类型。

  3.2产品选型

  3.2.1开口式开环霍尔电流传感器
图8/9/10/11/12

  4结束语

  文章介绍的功率测量电路可用于测量变换器供电电机的功率消耗。由于这类工作电压不是正弦波,而是脉宽调制的高频矩形脉冲,所以这种电路适用于脉宽为1微秒的电压,或者说脉冲重复频率是500kHz。电压的波形无关紧要,只要它的谐波低于2.5MHz。由于感应电流的存在,电流的频率不是很高,而且应该是正弦的。当电流频率高于IkHz时,本设计选用的测量传感器仍可以正常工作。由于它的峰值电流为33A,测量电压可以高达350V(峰一峰值),所以可以测量测量的功率高达2900W。当用于三相电源时,这个值相当于电机的功率为5O00w向。通过实验数据的处理以及误差分析,验证了本设计的合理性。

  根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

  霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波。

  【参考文献】

  [1]郭东栋.智能功率测量仪的设计[J].电子测试,2007(9)

  [2]黄颖辉.基于霍尔传感器的发电机功率测量系统设计

  [3]安科瑞企业微电网设计与应用手册2020.06版

电流霍尔传感器在发电机功率测量方面的应用

  摘要:文章分析了霍尔元件测量发电机输出功率的原理,并根据建立的数学模型设计霍尔元件测量交流电源功率的电路,通过理论计算确定所用元件参数(交流电源、交流磁场源电路设计)。根据软硬件的设计,做出了一个简单的测量装置。通过实验数据的处理以及误差分析,验证了本设计的合理性。

  关键词:霍尔元件;发电机;输出功率;交流磁场源

  0引言

  霍尔电流、电压传感器是近十几年发展起来的测量电流、电压的新一代工业用电量传感器,是一种新型的高性能电气检测元件。电网中,越来越多的负载采用电源变换器供电,用普通的功率计测量这类电能有点困难。例如发电机运行用的频率变换器就是把直流电压变换成频率自由选择的交流电压。根据电机的频率周期的变化,重复频率可以高达20kHz,脉冲宽度在l~5O微秒范围内。虽然电机的电流是连续的,但是由于电机是感性负载,故电机的电压是由许多高频脉冲电压组成的IS]。因此用普通的功率计不能测量脉宽调制的高频脉冲电压的有效值,采用霍尔效应元件的电流测量法。因为位于控制侧的霍尔效应元件具有把两个高频脉冲电量相乘的功能,只要再配上一定的放大器电路就能把结果显示出来日。

  1基本原理

  图1系统基本组成框图

  图1为霍尔式发电机功率测量系统基本原理框图。螺线管产生的磁场强度为:

  B=KbIL (1)

  霍尔元件的输出电压为:

  UH=KHIeB (2)

  把(1)式代入(2)式得:

  UH=KbKHILIeB (3)

  电机两端电压为:

  UL=KLIe (4)

  则:Ie=UL/RL (5)

  将(5)式代人(3)式得:

  UH=Kb/RLULILB (6)

  由(6)式得出:霍尔元件测得的输出电压UH与电机输出的功率ULIL成线性关系,从而实现负载消耗功率的测量。那么在正弦交流电路中,电压电流相量分别为UL,IL,它们之间相位差为φ,则:

  Ie=KbUlmsinwt (7)

  在负载上的电流为:

  ilm=ILMsin(wt+f) (8)

  其则在线圈上产生的垂直于霍尔元件的磁感应强度B可表示为:

  B=K1ILMsin(wt+f) (9)

  代入式(2)得:

  UH=KUlmILMcosφ-KUlmILMcos(2wt+φ)非(10)

  对上式求其平均值,得:

  UH=KUlmILMcosφ=KP (11)

  其中,K=KHKLKB,P=UIcosf为功率。因此只要测出了UH就可以计算出负载功率P。以上介绍的为一相的功率测量方法,对于三相电路,只需用三个和图l相同的电路进行分别测量,然后求三个测量值的和即可。

  2测量系统设计

  文章设计的功率测量系统主要以霍尔转换器和AT89S51为核心将电路中的电压电流乘积即电路消耗的电功率转化为霍尔元件的电势形式,通过测量霍尔元件的霍尔电势得到电路的电功率值,经过放大滤波、A/D转换等电路处理后,经单片机AT89551根据不同时段价格计算出所用电量并送到LCD上显示。系统包括霍尔元件传感器装置、微处理器、信号调理电路、A/D转换电路、LCD显示电路等。

  图2霍尔式发电机功率测量系统硬件框图

  单片机AT89C51在整个系统中将采集的A/D转换结果送入I/0口存储,通过对采集的数字信号进行计算出功率,并将结果送到LCD模块显示。单片机系统如图3所示。

  图3单片机AT89C51系统

  图4二阶有源低通滤波器

  信号调理电路由前置放大电路、低通滤波器、一阶同相放大器组成,如图4、5所示。图6为LCD显示电路,液晶显示模块采用EPSON点阵式EA—D20040模块。图7所示为A/D转换电路,文章采用美信ICL7135转换器芯片。

  图5一阶同相放大器

  图6EA—D20040与AT89S51接口电路

  图7A/D转换电路

  3霍尔传感器产品选型

  3.1产品介绍

  霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集和接受,响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强。适用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制。

  3.2产品选型

  3.2.1开口式开环霍尔电流传感器
图8/9/10/11/12

  4结束语

  文章介绍的功率测量电路可用于测量变换器供电电机的功率消耗。由于这类工作电压不是正弦波,而是脉宽调制的高频矩形脉冲,所以这种电路适用于脉宽为1微秒的电压,或者说脉冲重复频率是500kHz。电压的波形无关紧要,只要它的谐波低于2.5MHz。由于感应电流的存在,电流的频率不是很高,而且应该是正弦的。当电流频率高于IkHz时,本设计选用的测量传感器仍可以正常工作。由于它的峰值电流为33A,测量电压可以高达350V(峰一峰值),所以可以测量测量的功率高达2900W。当用于三相电源时,这个值相当于电机的功率为5O00w向。通过实验数据的处理以及误差分析,验证了本设计的合理性。

  【参考文献】

  [1]郭东栋.智能功率测量仪的设计[J].电子测试,2007(9)

  [2]黄颖辉.基于霍尔传感器的发电机功率测量系统设计

  [3]安科瑞企业微电网设计与应用手册2020.06版

闭环式霍尔电流传感器的硬件电路设计与选型

  摘要:传统霍尔电流传感器测量范围小、准确度等级低、频率范围窄、响应速度慢已不能满足实际工程的需求。为了满足核聚变领域的需求,设计了一种零磁通霍尔电流传感器。基于零磁通的原理和特性,为其设计了一种以脉宽调制(PWM)为核心的数字驱动电路,通过霍尔元件感应磁场,形成霍尔电压,经过放大电路、积分调节电路、PWM产生电路、功率放大电路、反馈电路,终形成二次侧的补偿电流,从而保证霍尔元件处于零磁通状态。测试表明:设计的传感器的电流测量范围为±30kA,准确度等级为0.5级,频率范围可以达到20kHz,响应时间在5μs以内。

  关键词:霍尔传感器;霍尔零磁通电流传感器;脉冲宽度调制;积分调节;功率放大;反馈电路

  0引言

  霍尔电流传感器基于磁平衡式霍尔原理,根据霍尔效应原理,从霍尔元件的控制电流端通入电流Ic,并在霍尔元件平面的法线方向上施加磁感应强度为B的磁场,那么在垂直于电流和磁场方向(即霍尔输出端之间),将产生一个电势VH,称其为霍尔电势,其大小正比于控 制电流I。与磁感应强度B的乘积。即有式中:K为霍尔系数,由霍尔元件的材料决定;I为控制电流;B为磁感应强度;VH为霍尔电势。

  作为世界上应用广泛、应用数量多传感器之一的霍尔电流传感器,具有灵敏度高、精度高、温度漂移小、工作寿命长、可靠性、性高等优点[1]。基于霍尔电流传感器的以上优点,考虑到一般大电流传感器不能交直流两用,准确度等级、频率范围、响应速度,也很难同时满足核聚变领域的需要。本文以闭环零磁通霍尔电流传感器为基础,设计出一种用于核聚变领域的大电流霍尔传感器电路,此传感器可测交直流电流。测量范围高至±30kA,输出信号准确度等级高、频率范围宽、响应速度快,同时解决了在大电流情况下晶体管的大功耗散热和电压等级提高影响的问题,很好地满足了核聚变领域的需要。

  霍尔电流传感器要想得到发展。首先就要提高灵敏度、恶劣条件下的稳定性、降低工作电压、微功耗;其次是敏感元件及其处理电路集成化、小型化;第三须做到功能多样化,同一种敏感机理的敏感器,引用和融合了电子技术其他分支的相关成熟技术,可形成新功能或复合功能的新型品种;最后要便于组网,传感器捕获的信息便于与其上层、下层机接口和有线或无线传输,以利执行、保存、处理。

  1零磁通霍尔电流传感器工作原理

  1.1霍尔效应现象

  具体产生的过程为:将通电的半导体材料(一般制成半导体薄片)放入磁场中,磁场的方向与电流方向夹角成90°(这时霍尔效应好)放置,这时由于导体中载流子受到洛伦兹力作用会发生偏移,在半导体薄片的两边会产生一个电压差,在电场及磁场力的作用下载流子的运动达到一个平衡状态,这一过程即为霍尔效应产生的过程,产生的电压称之为霍尔电势,霍尔电势Vh为:

如图1

  式中I为通过霍尔元件的电流;B为垂直霍尔元件的磁感应强度;Kh为霍尔材料灵敏度系数。Kh=Rh/d×f(L/b),Rh为霍尔系数;L,b,d为霍尔元件的长、宽、高;f(L/b)为修正系数。

  1.2工作原理

  如图1所示为零磁通霍尔电流传感器的工作原理。一次侧的原边电流I1在磁芯中产生的磁场B1与二次侧4边线圈中I2产生的磁场B2相平衡,从而使4个霍尔元件H始终保持零磁通的工作状态。补偿电流I2的产生方式:霍尔元件在感应到磁场的不平衡后,产生霍尔电压Vh,经过比例放大和积分调节后,转换为脉宽调(pulsewidthmodulation,PWM)信号用于驱动功率放大电路,再由功率放大电路提供相应占空比大小的电压,终形成二次侧的电流I2。在整个传感器系统稳定时,一次侧和二次侧的磁场始终保持平衡,即有N1·I1=N2·I2。

  闭环的霍尔电流传感器采用的是磁平衡原理。所以闭环的在响应时间跟精度上要比开环的好很多。

  当原边电流IP产生的磁通通过磁芯集中在磁路中,霍尔器件固定在气隙中检测磁通,通过绕在磁芯上的多匝线圈输出反向的补偿电流,用于抵消原边电流(IP)产生的磁通,使得磁路中磁通始终保持为零。霍尔器件和辅助电路产生的副边补偿电流准确反映了原边电流的大小。经过特殊电路的处理,传感器的输出端能够输出反映原边电流的电流变化。

  考虑到使用的磁芯为正方形框体形状,磁芯上不同位置处的磁场强度有所不同。为提高系统整体精度,本传感器系统设计在磁芯的互为对称的框体四边的中点位置设置霍尔元件,共计4个霍尔元件,分别用来感受4点的磁场强度。以这4个霍尔电压大小的和来衡量磁场的不平衡量,作为系统的反馈量。

  2系统硬件电路设计

  整个电流闭环传感器系统分为6个部分:1)霍尔器件供电电路,由恒压源给霍尔元件提供工作电流;2)感应电路,一次侧电流发生变化时,磁场平衡被打破,元件感应到磁场不平衡从而产生霍尔电压Vh;3)放大电路和积分调节电路,对霍尔元件产生的微弱霍尔电压信号进行放大调节;4)PWM波产生电路,放大后的霍尔信号与载波通过比较器比较,后产生三电平的PWM信号;5)功率放大电路,PWM波驱动金属氧化物半导体场效开通,形成一定占空比的电压信号,加在补偿线圈两端从而形成反馈电流;6)反馈电路,依据磁平衡原理,利用二次侧补偿线圈产生的磁场对一次侧磁场进行补偿,使气隙处始终处于零磁通状态,其工作流程如图2所示。

  2.1霍尔元件

  霍尔元件是组成闭环霍尔电流传感器的重要组成部分,本设计选用锑化铟为元件材料的器件HW-302B,其采用单列直插式封装形式。输入采用电压或电流两种模式供电,大输入电流为20mA,输入、输出阻抗为240~550Ω,失调电压为-7~7mV,温度系数为-1.8%/℃,输出霍尔电压范围为122~204mV。由于采用电流源模式供电,引脚1,3为控制输入端,引脚2,4为霍尔电压输出端,霍尔元件置于磁芯气隙处,能大程度地感应垂直穿过霍尔元件的磁场,得到稳定的霍尔电压。

  2.2放大电路和积分调节电路

  一次侧电流发生变化时,磁场平衡被打破,元件感应到磁场不平衡从而产生微弱霍尔电压Vh,由于电压很小,需要对此信号进行放大和调节,采用OPA2277高精度运算放大器。通过改变电阻值来改变放大倍数,OPA2277的1,2引脚之间跨接电阻器组成比例放大电路,6,7引脚之间跨接电阻器和电容器组成积分调节电路。本设计电路通过调节与电容器相连的可调电阻器来调整放大倍数,电路如图3所示。

  2.3PWM波产生电路

  设计的PWM波产生方式是用霍尔输出放大信号与载波进行比较,产生一定占空比的三电平信号。如图4所示,为载波调节电路,通过调节LF347的1,2引脚之间的可调电阻器RP3调节载波幅值,调节与6引脚相连的RP2改变载波的偏移量,引脚7输出负载波(TRI-),引脚8输出正载波(TRI+)。

  如图5所示,VERR与TRI+通过比较器LM393比较,比较后的信号经过处理产生PWM1和PWM3;VERR与TRI—通过比较器LM393比较,比较后的信号经过处理产生PWM2和PWM4。

  2.4功率放大电路

  如图6所示为功率放大电路原理。该电路的供电电压为正负直流电压,其中VDC+,VDC-值相等,0V为0电位,功率放大电路采用正负向对称的设计。为了在引出位置(即二次侧线圈串联采样电阻)输出正向或反向的电压;4路PWM波驱动T1~T4,通过控制4个MOSFET的通断来控制引出位置的电压。具体工作原理以正向为例来说明:在需要产生正向电压时,PWM2为高电平,MOSFET管T2一直开通,对应的PWM4为低电平,MOSFET管T4一直关断。PMW1为设置好占空比的PWM波,用于控制MOSFET管T1,PMW3与PMW1为逻辑运算与非关系,此时的MOS-FET管T3的状态对电路无影响。T1开通时,电流方向:VDC+→T1→T2→引出位置→0;T1关断时,电流方向:引出位置→D1→T2→引出位置,形成续流回路;引出位置接二次侧线圈,线圈电感很大,通过控制PMW1的占空比来实现控制二次侧线圈上的补偿电流。

  2.5反馈电路

  闭环零磁通霍尔电流传感器采用磁平衡原理,被测电流产生的磁场需要通过二次侧线圈电流进行补偿,使霍尔元件在气隙处始终处于零磁通工作状态。

  2.6霍尔元件补偿

  由于半导体特性和制造工艺等原因,霍尔电流传感器在对电流测量时总是存在一定的误差。为进一步提高霍尔元件的测量精度和灵敏度,往往需要对霍尔元件进行误差补偿,其主要包括温度补偿和不等位电势补偿。

  2.6.1温度补偿

  由于霍尔元件是有半导体元件制成,半导体材料的电阻率、迁移率、载流子的浓度都会随温度的变化而变化,造成测量误差,因此需要温度补偿。针对温度变化导致的内阻变化,可以采用对输入或输出电路的电阻值进行补偿。

  2.6.1.1输入回路补偿法

  如图7所示,采用恒流源供电,并联分流电阻器R,设初始温度为T0,霍尔元件的输入电阻值为R0,霍尔电流为I0,霍尔元件灵敏度为K0,当温度上升到T时,霍尔元件的输入电阻值为R1,霍尔电流为I1,霍尔元件灵敏度为K1。

  式中下标0,1分别为温度为T0和T的有关值,α为霍尔元件灵敏度温度系数,β为霍尔元件输入电阻温度系数。当温度影响带来的测量误差完全补偿时,不同温度下输出的霍尔电压相等。
如图7

  2.6.1.2输出回路补偿法

  输出回路进行温度补偿的电路,当温度变化时,用热敏电阻值Rt的变化来抵消霍尔电势Vh和输出电阻值R0变化对输出电压的影响,从而保持输出霍尔电势与温度基本无关。

  2.6.2不等位电势补偿

  不等位电势是霍尔元件在加额定控制电流而外磁场为零时出现的霍尔电势,称其为零位电势(及零漂)。在分析不等位电势时,可将霍尔元件等效为一个电桥。输入电1,3和输出电2,4可看作电桥的电阻连接点,其相互之间分布电阻值R1,R2,R3,R4构成4个桥臂,当B=0时,理想情况下Vh=0,即4个电阻值相等。如果通入额定电流,而Vh不等于0,说明4个电阻存在差异,需要添加平衡电桥电路[9]。如图8所示,通过对滑动电阻器的调节可以达到霍尔元件的电桥平衡,从而在B=0时,使输出电压Vh=0。

如图8

  3测量结果及处理

  3.1测量方法

  1)选用的测试电源为高精度逆变电源,此电源可以输出电流为正负直流、交流,输出通过导线和负载相连,负载为一个大环形线圈,被测传感器套在大环形线圈臂上(即电源输出一个小电流用等效安匝法使电流加倍);另外高精度逆变电源输出导线上套有标准电流传感器。

  2)设计传感器电路可以采集交直流信号;板卡控制电选用直流12V,功率放大电路供电电压为直流±80V。

  3)将设计传感器的信号输出端与电阻器相连,电阻器另一端接到±80V电源的0V电位上。分别采集电阻两端电压信号和标准电流传感器输出电压信号。

  3.2测量范围和准确度等级(精度)

  在室温下对设计传感器进行测试,实验数据如图9。实验中用大环形线圈等效安匝法模拟了一次侧的大电流,一次侧大环形线圈绕组匝数为532,标准电流传感器匝比为100,设计传感器匝数为6000。i1为一次侧单匝导线上标准电流传感器测量值;i2为设计传感器采样电流;I1为一次侧的换算电流,I1=532100i1;I2为二次侧的换算电流,I2=6000i2;δ为相对误差,

  其中,X为设计传感器的示值,XS为标准传感器示值。表中第7组数据为零电流时各传感器的输出值(即零漂值)。

如图9

  从图中可以看出:大电流达到了±30kA;大相对误差为0.44%,出现在实验中电流小的点,且明显有电流较小时相对误差更大的情况。造成这种情况的原因是,零点漂移得不够,数据较小时,采集测量的零点漂移影响了传感器的准确度等级,但整体准确度等级达到了0.5级(精度为0.5%)。传统传感器测量范围在±10kA以下,即使范围能到达±30kA的准确度等级为1.0级。

  4安科瑞霍尔传感器产品选型

  4.1产品介绍

  霍尔电流传感器主要适用于交流、直流、脉冲等复杂信号的隔离转换,通过霍尔效应原理使变换后的信号能够直接被AD、DSP、PLC、二次仪表等各种采集装置直接采集和接受,响应时间快,电流测量范围宽精度高,过载能力强,线性好,抗干扰能力强。适用于电流监控及电池应用、逆变电源及太阳能电源管理系统、直流屏及直流马达驱动、电镀、焊接应用、变频器,UPS伺服控制等系统电流信号采集和反馈控制。

  4.2产品选型

  4.2.1开口式开环霍尔电流传感器

如图10

  4.2.2闭口式开环霍尔电流传感器

如图11/12

  4.2.3闭环霍尔电流传感器

如图13

  4.2.4直流漏电流传感器

如图14

  【参考文献】

  [1]武旭,王林森,居鹏.闭环霍尔电流传感器的硬件电路设计

  [2]程兴国,但强,孙珍军.一种新型闭环式双铁芯霍尔电流传感器的建模与实现[J].传感器与微系统,2013,31(7):12-18.

  [3]安科瑞企业微电网设计与应用手册2020.06版


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 其实大家都知道,人生没绝对的安稳,既然我们都是过客,就该带着一颗淡定的心,走过流年,笑看人世起落。而有的人喜欢你,是看到你的哭和狼狈,知道你的辛苦和平凡,允许你
  • !!
  • ”你一瞬间噗嗤一声笑出了声,甚至因为笑而带动的腹部肌肉夹了他一下,“黎深,你是出走到法国了,这是在凡尔赛吗?黎深的眼神有一丝诧异,但是很快领会你的意思开始扶着自
  • )为什么其他人两两组队都可以成为荧幕情侣,而彩琴两个人不可以,要被说成是“拆cp”“拉瓜做花”“强行配对”……但两个人之间莫名的氛围感又让我觉得那些理论难以成立
  • 而她的男朋友在这方面的表现让她感到失望,这也是可以理解的。面对男友的冷落我该怎么办 上海闵行区的曦曦同学叙述:就是前段时间我觉得男朋友有些冷落我了,无论在金钱上
  • 据中国铁路12306官网公布的票价表显示,武汉至广州南二等座2024年6月15日起公布票价为553元,而此前公布票价(现执行票价)为463.5元,提高了89.5
  • 17、有些人你并不讨厌,甚至随着交往的加深你会越来越欣赏他们,前提是老天爷没有提前把你们放在尴尬的位置上。12、最没用的四种东西:分手后的悔恨,不爱后的关怀,高
  • 千万别让烦躁和焦虑,毁了你本就不多的热情,别贪心,我们不可能什么都有,但也别灰心,我们也不可能什么都没有,人生就是这样,别看的只是结果,而自己撑的是整个过程,面
  • 狮子座在外面是“霸道总裁”但是在家里他们却是温柔好男人,有他们在你不用考虑太多的问题,他们负责挣钱,你负责花钱,两个人分工明确。Top4:白羊座白羊座男生一向都
  • 我们是两个独立的个体,无法准确拥有彼此,所以写下此信致我素未蒙面的爱人: 大抵是想念的欲望达到顶峰,我总会在安静的氛围中流下不知名的眼泪,我把这一切都归根于太想
  • 工不仅是个直男还很直球有什么说什么,前边两个人拉扯的时候最好看,一个步步紧逼一个节节后退,尤其是暗恋者的独白,有暗恋经历的人都能感同身受其中的心酸[苦涩][苦涩
  •  股市是有心跳、有脉搏的,是活生生的,如果你能够捉摸到股市的一点点脉动,会揭开她的面纱,感受到一些轮动的规律,这就是所谓的盘感。一方面,睡太多会打乱身体原有的节
  • 人间清醒的12句话,读懂了后半生越来越顺:1、如果让你小病一星期,你会发现金钱没那么重要,家人和身体健康最重要;如果让你大病一个月,你会发现金钱特重要,身体和家
  • 今天,就向大家介绍一个既善养血,又可治疗湿疹的药方——湿疹外洗包。反馈2:你们客服说湿疹手脚脱皮啥的都可用来泡,我不知道是手藓还是湿疹有点严重,到处找药治疗,效
  • 1、八字财官星伏吟财星在命理中表示男命广义的女人,说明命主现实生活中周围女人较多,且由财星伏吟的关系,命主与女友的关系易时好时坏、断断续续的,之后很有可能会情缘
  • 做完了过哈发表给罗姐 再喝水 空调来开了 赵姐说来点music克 哈哈哈 又听歌了真好 喜欢听歌 喜欢舞蹈 是梁静茹的 现在是蔡健雅的歌 我的耳朵非
  • 天上的星星本来是黑暗的地上的湖泊本来是浑浊的水里的鱼儿本来是孤独的澹台烬的眼睛成了星星澹台烬的液成了湖泊澹台烬的四肢成了鱼群从此脚下有光水清澄明鱼儿结伴历遍山河
  • 在感情中,狮子渴望找到能与自己平起平坐的强劲对手,绝不容忍软弱可欺,一旦发现对象没什么出息,马上就会打入冷宫,狮子也不会客气。鸡东张西望,不知道如何回到自己的家
  • Gucci的悠久历史为该品牌带来了丰富的灵感与装饰性图案,而它们均被完美地融入到各款手表之中。这次我们就通过这款东方双狮SEM78002WB腕表,来领略一下日本
  • 如果你在买入时主趋势反转,不要与主趋势作对,处理好手中的持仓,离开市场,重新思考新的交易方案。在股市中大部分股民都是散户和小额投资者,他们根本谈不上能操纵股市,