“碳”是生命的基础!

一直以来我们都强调要增施有机肥改善土壤提高土壤有机质,其实増施有机肥还有一项重要的作用、就是补充土壤碳元素!

我国许多农业区县的土壤调查显示,我国大面积农田经过四十多年“化学农业”耕作,土壤中的有机质几近耗尽。 

国家农业部门近两年进行的测土调查,每个县抽取4000-6000个土样。检测结果显示:有机质含量2%以上的不足5%,有机质含量1.5%以下的占80%,还有近15%土样中有机质含量在1%以下。 

众所周知,有机质的碳系数是1.724,即1.724个有机质有1个碳。土壤有机质含量太低,意味着农作物基本上不能由土壤吸收到水溶有机碳。农作物从根部得不到碳供应,这就导致缺碳。

所以,碳对于作物来说有着非常重要的作用,它居于16种植物必需营养元素之首!但,却常常受到人们的忽视!

01

为什么忽视了?

作物生长必须的营养元素有16种,分别是碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、锰、锌、铜、硼、钼、氯。按排序来说前六种元素是植物需要量最大的,因此称之为大量营养元素。而碳、氢、氧这三种营养元素在大气和水中广泛存在,一般情况下不需要额外补充。所以很多时候我们没有去关注碳元素。
正常情况下,植物通过叶片从空气中吸收二氧化碳进行光合作用便能满足作物的基本需求,但这并不是作物碳的“唯一”来源,植物的另一个吸碳途径---通过根系从土壤中吸收水溶有机碳(有机质中含有的能溶于水的小分子碳)对作物的生长具有重要作用。另外,植物利用CO2(在阳光充足时)最佳浓度是0.1%,而自然界空气中的CO2平均浓度只有0.03%,植物光合作用远没有达到最佳状态。而现在设施蔬菜栽培的作物,冬季大棚通风差,再加上光照强度低或者阴雨天光照不足、作物光合作用弱,农作物缺碳更严重。如果此时土壤中若不能很好的供应碳元素将会对作物产量和品质造成绝对的影响。

02

缺碳给作物带来的具体危害有哪些呢?

1、根系衰弱:根系靠什么促?首先是根的趋水趋肥性,使根系有一种内在的向外向下伸长的刺激,缺了有机质的土壤含水性差,各类肥料溶液向根部“表达”能力差,致使根系生长的内在刺激不足;

其次,土壤微生物同根系的互动,是根系生长的外源刺激。土壤中有机质不足,微生物繁殖所需的碳源不足,致使根际微生物群落稀疏,根系生长的外源刺激太弱,根系就失去了生长的外部刺激。

因此土壤缺乏能被根系和土壤微生物直接吸收的水溶有机碳——有效碳,直接造成农作物根系衰弱、老化。这就是农作物减产和抗逆性差的根源。

2、早衰:农作物早衰的原因,自然与根系衰弱直接相关。

这里要另外提到的是农作物其他器官和内部组织,尤其是木质素、纤维素和糖份,由根部吸收的有效碳转化所需的能量比较低,也即夜间和阴雨天,或大棚环境CO2不足阳光较弱的情况,这种转化和积累还可不停进行。

相反,根部基本上吸收不到有效碳的情况,农作物仅靠叶片的光合作用转化CO2,同样的积累所需的转化能就大得多。

在白天阳光充足时,能量得到供应,但在夜间或阴雨天,这种转化和积累就要靠消耗作物内部的能量来进行。

这种能量收支的规律失衡,是导致植物早衰的另一种原因。这种情况在生长期较长的瓜豆类蔬菜和果树尤为显着。

试验表明:在使用等量化肥的情况下,底肥加施充足的有机肥,四季豆、苦瓜、黄瓜、茄子等作物,收获时间可延长一至二个月,总产量提高30-60%;在河南某苹果种植区调查发现,种在村子旁边的苹果树,农民勤施农家肥,果树下面长满青苔,二十几年树龄了,还杆壮枝鲜,绿叶掩映,硕果满枝,一派勃勃生机。

这些果实大多达到9公分规格,香气可闻,又脆又甜,用精包装论个卖,一个苹果5元,供不应求,小车货车开到合作社门口等货。而村外梯田里的苹果由于缺乏施用有机肥,施肥季节只施化肥,年年如此。

树叶早掉完了,远看果实累累,象无数串红灯笼,但近看果实都在7公分以下,口感酸涩,一斤才卖得0.8元,在地头一堆堆等过路车辆带卖。

这些树也是二十几年树龄,树体已老态龙钟,许多树枝杆布满腐烂的病斑,不少树杆已被“肢解”清除。

以上例子充分说明:有充足的有机碳,植物生命力就旺盛,就长寿就高产;反之,植物就早衰,就减产。

3、黄叶病和失绿症:阴雨天光合作用接近停止,空气中CO2不能正常被吸收转化,农作物的碳营养和碳能源双双下降。

阴雨持续,就产生黄叶落叶,有些作物的新叶表现为失绿。一般误认为是“水浸”,其实只有同时烂根才是“水浸”,一般并不是“水浸”而是缺碳。

4、亚健康:什么是农作物的“亚健康”,就是植株没有明显的病症,却萎缩慢长,或纤萡虚长,还有就是完全失去了原生态的气味。

亚健康的成因有许多,除了自然灾害后遗症外,还有种子质量、药伤肥伤后遗症、营养不良等等。

我们单讨论营养不良问题。当前一般农作物的化肥营养供应是充足的,但往往就是有机营养严重不足,也即缺碳。

又回到老问题:不是空气中有取之不尽的CO2么?请别忘记:空气中CO2在植物体中的转化,首先要靠光合作用。夜间这种转化几乎停止了,然而农作物还在新陈代谢,还在消耗能量。

如果有根部吸收水溶有机碳作补充,不但可继续进行物质转化和积累,还可供应新陈代谢的能量。

一旦缺碳,这种情况就不能进行,于是植株就日夜交替周而复始地出现间歇性“透支”,这就使植株不能正常生长和完成物质积累,处于一种“亚健康”状态。 

5、削弱防病抗逆机能:许多专家的研究表明:植物对抗恶劣环境和防抗病害。主要靠自身产生的能量和“信息素”、“修补物质”。

在环境条件恶化的情况下,一般正常的光合作用也不能进行了,这时更需要由根部吸收有效碳来补充能量。

可见缺碳对于恶劣困境中的植物意味着什么。植物在病虫害胁迫的情况下,会施放某种“信息素”,使病害源“知难而退”,如果植物组织受到损伤,它还会制造“修补物质”来修补(或称再生)。

这些“信息素”和“修补物质”,无一例外地都有碳元素存在,有机营养素越充足,这些物质越浓烈,这就是为什么弱株比壮株容易得病的原因。

缺乏根部供应的有效碳,不但营养积累少了,而且防抗病害机制也削弱了,这是植物发生病害的内在原因。因此可以毫不夸张地说:缺碳是农作物的百病之源。

6、品质下降和物种退化:大家都能感受到:有机食品口感好,原生态气味浓,而化肥培养的农产品,口感平淡,有些甚至完全失去原生态味道。

当然这仅仅是表象,而本质就是:“化肥农作物”内含物中的物质组成比例变异,新陈代谢的异常衍生物使作物遗传信息的表达缺失或紊乱,这不但降低了农作物的产品品质,而且造成物种退化。

除了杂交品种外,一般纯种的农作物是可以代代相传的,但现在连一般农民都很少靠自己留种了,因为这种“相传”已经不可靠了。

我们相信,那些负责任的种子培育企业,在培育纯种(当然也包括杂交)种苗时,一定会重视足量有机肥的使用的。否则,他将很快收到“物种退化”效应的惩罚。

03

缺碳间接造成农作物的主要病害

(1)土壤板结和药害:土壤中农药残留严重,造成农作物多种病害,如果土壤中有机质丰富,或者对土壤施足有效碳,这些危害是可以减轻甚至是可以避免的。

有效碳不仅是良好的土壤改良剂,可以解决土壤板结的问题,而且,有机碳化合物还是良好的解毒剂。

残留农药通过氧化和光分解,药性又会进一步降低,重新繁殖起来的微生物反过来会“吃”掉这些残留物。

(2)化肥的负面影响加剧:土壤板结的主要原因是有机质的缺失,而不是由于使用化肥。这并不是说化肥对土壤板结没影响。

有机质缺失,化肥对土壤板结就更加明显。而有机质丰富,化肥被利用率大大提高了,化肥残留于土壤中的硫酸根、氯离子、亚硝酸盐等物质会因转化为水溶有机化合物,以及丰富的土壤微生物的多重作用而无害化,使土地可以永续耕作。

所以归根结底,化肥“使土壤板结”的负面作用并不是化肥之过,而是人们忽视了向土壤施用足量的有机肥料的结果。

04

碳元素为何如此难补?

我们为作物补充各种元素,原因很简单,这些是它们所需要的;目的更简单,就是为了让植物健康的生长。所提供的肥料就相当于植物的一日三餐。

试想,其他的元素我们都给予的“易消化的,易吸收的”,而唯独碳元素我们就给一块“难啃的骨头”,这样一来植物对碳的需求一直会处于一个半饱不饱的状态。

有的朋友会感到疑惑,我们大量施用有机肥,为什么还不能给植物补充到足够的碳呢?

有机肥是缓效肥料,它的有机质含量虽高,但大部分在短近期不能溶于水。大部分有机质以腐殖质形式存在,须经土壤微生物长时间分解才能逐渐释放出水溶性碳。 

有人曾试验:将有机肥兑4倍水混匀置于密闭容器中100天,测试其溶于水的有机碳仅1%!可见,施进土壤的有机肥,其当季被吸收的有机营养(主要是水溶有效碳)是非常少的。

有机肥之所以有肥效,一是它改变了土壤的结构,提高了土壤的物理肥力和生物肥力;二是它所含的N、P、K营养元素(一般在5%左右)作用发挥得比较充分,具备了一定的化学肥力。

而其短近期内发挥作用的有机质肥力——水溶有机碳则很有限的,这就说明:连续地大量地使用合格有机肥,才能保证农作物根部吸收所需的有效碳。

所以说我们要重视碳的补充,利于作物生长、增加作物产量的同时,提高农田土壤质量,使得农业可持续发展。因此国家化工部行政司司长孙立文教授发明研制的“聚碳酶”则很好的解决了缺碳,碳难补等问题。聚碳酶具有加强作物吸附二氧化碳作用的专用酶。作物生长必须的大量元素是碳、氢、氧、氮、氮、磷、钾。碳是生命的基础,只有充足的养分才能保证作物生长良好。 https://t.cn/R2WxCaU

【2021年度中国生命科学十大进展发布】

2021年,有哪些生命科学的新奥秘被中国科学家破解?有哪些关于新冠病毒的秘密被揭示?有哪些医学新突破为癌症治疗带来希望?10日,中国科学技术协会生命科学学会联合体发布了2021年度“中国生命科学十大进展”,人工合成淀粉、新冠肺炎疫情防控、鼻咽癌治疗等成果入选。与以往的评选相比,本次入选成果原创性更为突出,为生命科学新技术的开发、医学新突破和生物经济的发展提供了新思路,显示出生命科学和相关技术的社会影响力。

食 为粮食生产带来颠覆性革命

民以食为天。吃得饱吃得好是人们共同的追求,然而目前的粮食生产,仍离不开“靠天吃饭”,生命科学技术能有哪些变革,从而为“食”提供新方案呢?此次的十大进展中,就有两项与“食”相关。

淀粉是粮食最主要的成分,也是重要的工业原料。能不能跳过农业种植,直接在实验室合成淀粉呢?此次入选的“从二氧化碳到淀粉的人工合成”,就在国际上首次实现了淀粉的人工全合成,该成果将在下一代生物制造和农业生产中带来变革性影响。这项由中国科学院天津工业生物技术研究所联合大连化物所等单位开展的研究,颠覆了植物合成淀粉的复杂过程,能效和速率超越玉米等农作物,为淀粉的车间制造打开了一扇窗。这项研究在国际上引起强烈反响,被认为是一项里程碑式突破。

水稻作为我国的主食之一,对其改良从而提高产量历来备受重视。在2021年,我国科学家在水稻育种方面又有新突破。中国科学院遗传与发育生物学研究所李家洋团队首次提出异源四倍体野生稻快速从头驯化的新策略,并成功创制了改良落粒性、芒性、株高、粒长、茎秆粗度、生育期等不同类型的四倍体水稻新材料,突破了全部技术瓶颈。该成果开辟了全新的育种方向,对应对未来粮食危机提供了新的可行路径,有望对世界粮食生产带来颠覆性的革命。

抗疫 给预防、治疗新冠肺炎带来希望

有关抗击疫情的两项研究,“新型冠状病毒逃逸宿主天然免疫和抗病毒药物的机制研究”与“冠状病毒的跨种识别和分子机制”对当今国际社会复杂的抗疫形势有重大意义。

当前,新冠病毒肺炎疫情已持续两年,不断出现的突变株对发展广谱药物提出急迫需求。由病毒复制酶组成“转录复制复合体”,负责病毒转录复制的全过程,在各突变株中高度保守,是开发广谱药物的核心靶点。清华大学饶子和院士、娄智勇教授课题组,在国际上首次发现和重构了新冠病毒转录复制机器的完整组成形式,为发展新型、安全的广谱抗病毒药物提供了全新靶点,为优化针对聚合酶的抗病毒药物提供了关键科学依据。

近20年,人类遭受了三次由冠状病毒引发的重大疫情。大多数感染人的冠状病毒来源于动物,而病毒在人际传播往往是滞后的,疾病防控的关口需要在“时间”上前移。因此,此次入选的十大进展中,另外一项有关抗疫的研究,着重于预防新的冠状病毒引发疫情。

这项由中国科学院微生物研究所高福院士团队开展的研究,建立了高效评估冠状病毒跨种识别能力的方法,利用这些方法对蝙蝠源性冠状病毒和穿山甲源性冠状病毒的跨种传播潜在风险进行评估,发现上述三种冠状病毒存在跨种传播的潜在风险,提示我们要持续对动物源性冠状病毒进行监测。

解谜 远古生物如何进化、鸟儿迁徙为何不迷路

远古时期的鱼类如何进化登上陆地?地球上的鸟儿为什么远途迁徙不会迷路?2021年,中国的科学家又向解开更多生命的奥秘迈进一步。

西北工业大学生态环境学院王文、王堃团队与中科院水生生物研究所何舜平、昆明动物所张国捷等团队合作,发现硬骨鱼祖先已进化出了适应陆地的相关初步遗传基础,并在肉鳍鱼内得到进一步加强,最终进化为四足动物而成功登上陆地。这为破解4亿多年前,脊椎动物如何从水生进化到陆生这一重大事件的遗传创新机制,提供了关键认知和数据。

鸟类迁徙路线的形成过程、维持机制和在气候变化下的未来趋势,以及迁徙策略的遗传基础,一直是学界的研究热点和难点。中国科学院动物研究所詹祥江团队历时12年,通过整合多年卫星追踪数据和种群基因组信息,建立了一套大陆尺度的北极游隼迁徙研究系统。不仅阐明了气候变化在鸟类迁徙路线形成、维持及未来变化趋势中的驱动作用,还揭示了长时记忆可能是鸟类长距离迁徙的重要基础。该研究全面结合遥感卫星追踪、基因组学、神经生物学等新型研究手段,展现了学科交叉型的创新性研究在回答重大科学问题中的关键作用。

抗癌 鼻咽癌有了新治疗方法

鼻咽癌是“中国特色”肿瘤,年新发病例占全球一半。放疗后的全身微小残留肿瘤是其治疗失败的根源,而由于放疗后患者身体状况差,难以耐受既往高强度的传统化疗(完成率仅约40%~50%),成为制约疗效提高的瓶颈。

生命科学研究能够为抗击癌症提供新的治疗方法。中山大学肿瘤防治中心马骏研究团队提出了小剂量、长时间口服细胞毒药物卡培他滨的节拍化疗模式。这种治疗方法,可通过抗血管生成、杀伤肿瘤干细胞等机制持续抑制肿瘤,同时提高机体耐受性。临床研究发现,在放疗后使用这种方法可将失败风险显著降低45%,且严重毒副作用发生率减少了3/5,完成率达74%。同时这种方法方便可及,易于向基层推广。由此,该研究打破了传统化疗的疗效瓶颈,建立了鼻咽癌国际领先、高效低毒且简单易行的治疗新标准。

前沿 基因调控、纳米尺度显微镜、脑科学相关成果入选

还有三项入选的十大成果,均聚焦国际生命科学研究的核心和前沿问题。

复旦大学徐彦辉团队的研究成果,揭示了转录为何发生在几乎所有基因的启动子上,颠覆了关于启动子识别和转录起始复合物组装的传统认识,对理解基因表达调控和相关生理病理过程具有重要意义。

中国科学院生物物理研究所徐涛院士组和纪伟研究组组成的技术攻关团队,一直聚焦于突破光学显微成像分辨率的研究,他们的研究成果可解析纳米尺度的亚细胞结构,为生命科学研究提供了有力工具。该研究表明光学显微镜已经步入纳米分辨率时代,我国科学家在该领域具备多学科交叉技术创新能力,研制的具有自主知识产权的新型超分辨成像设备处于国际领先地位。

东南大学脑科学与智能技术研究院彭汉川、顾忠泽、谢维团队建立了世界上首个完整的全脑单神经元分辨率大数据和信息学平台并应用于全鼠脑研究,他们的研究对大脑细胞分型和功能、脑连接环路、全脑大规模模拟、类脑计算、基于生物脑的新型人工智能算法和系统等会持续产生重要作用。

据了解,中国科协生命科学学会联合体自2015年起开展评选以来,每年的评选都由生命科学、生物技术和临床医学等领域资深专家评选,并经中国科协生命科学学会联合体主席团审核,推动了我国生命科学研究和技术创新,让更多人了解了我国生命科学领域的重大科技成果。

来源:光明日报

【谁在背后,安排了宇宙的一切?爱因斯坦与杨振宁的怀疑或许是对的】

爱因斯坦的怀疑

世间万物运行有序,冥冥之中似乎有神奇的力量在控制着事物的运行。

在基督徒的眼中,是上帝用六天的时间创造了这个世界。上帝创造出白天、黑夜、空气、陆地、花草树木、动物等所有事物后,又创造出了亚当和夏娃。亚当夏娃相爱以后生了很多孩子,于是就有了人类。

用现代科学的眼光来看,亚当夏娃的传说当然不可信。但是著名物理学家爱因斯坦却说过这样一句话。他说“我想知道上帝是如何设计这个世界的” 。

研究物理的科学家很多都是无神论者,而且爱因斯坦也是出了名的无神论者。但是他为什么在洞悉了这么多的科学理论知识后,还怀疑上帝的存在呢?

早在一个世纪以前,爱因斯坦就凭借自己对物理学领域的研究成果成为了最有名的科学家。爱因斯坦研究出了狭义相对论,这让人们对时间空间的概念有了全新的认识。爱因斯坦还研究了光电效应的有关内容,自此,人类打开了量子世界的大门。

另外,爱因斯坦研究的分子运动、广义相对论等内容,直到今天还有人在他研究的基础上进行深入研究。时至今日,很多人都能一眼就认出爱因斯坦的照片。可见,爱因斯坦在人类科学进步史上有着非比寻常的地位。爱因斯坦也因为科研成果突出,而被外界密切关注。

在爱因斯坦五十岁左右的时候,曾经在一次专访中表示自己不是无神论者,他也不认为自己是泛神论者。他认为,这些问题在思维的限制下变得狭隘。

在爱因斯坦眼里,人类就像是一个小朋友在一个庞大的图书馆里,这里有各种语言文字。虽然小朋友无法看懂这些文字和语言,但是他隐约能够感受到这里有着某种自己难以表达的神秘规律。不过目前,我们都只是能够看到一部分有组织、有秩序的法则并且遵循,但是我们还没能彻底理解法则。

“我相信斯宾诺沙的上帝,因所有存在物质之井然有序显示出了祂的存在。但我不相信将自己献身于人类命运及生活的那位上帝。”——爱因斯坦

斯宾诺沙是十七世纪荷兰的一位理性哲学家。他认为上帝不是超然的、统治世间万物的宇宙创造者,而是自然规律本身。在他眼里,我们人类只是遵循自然规律存在的一员。爱因斯坦在这句话中很明确地指出,他所谓的“上帝”,并不是具有神话色彩的上帝,也不是一个灵魂或者一个个体。

爱因斯坦眼中的上帝是宇宙的规律、是世间万物的运行法则、是人类还没有摸索到的科学边界。而他的那句“我想知道上帝是如何设计这个世界的”,不是怀疑上帝创造了一切,或者说他想要找到上帝是谁,而是说他想要了解宇宙诞生、存在、运行的所有秘密。

杨振宁的怀疑

除了爱因斯坦,著名物理学家杨振宁先生也曾说过“如果要问有没有一个造物者,那我想是有的,因为整个世界的结构不是偶然的。”

杨振宁先生是我国科学院院士,也是诺贝尔物理学奖获得者。他研究的相变理论通过解析延拓的方式,研究了巨配分函数的解析性质,解释了同一相互作用下为什么会有不同热力学相的问题。他研究的玻色子多体问题、杨—Baxter方程、1维δ函数排斥势中的玻色子在有限温度的严格解、弱相互作用中宇称不守恒等科学研究都有着开创性的成果。

《物理世界》杂志在2004年邀请读者评选科学史上最伟大的公式,最终麦克斯韦方程组夺得桂冠。而杨振宁就曾经用“妙不可言”来形容该方程组。麦克斯韦方程组帮助人类认识了电磁现象,揭示了电磁相互作用的完美统一,并且被广泛应用到了技术领域。

同为物理学界非常有名的大亨,爱因斯坦认为物质井然有序,杨振宁认为世界结构存在一定的必然性,两者对于宇宙的猜测有着高度的相似性。为什么说两位物理界巨头都怀疑世界上有“上帝”或者“造物者”存在呢?

从地球遥望宇宙,我们整个太阳系都不过是一粒微不足道的尘埃。在浩瀚的宇宙之中,人类的力量更是微弱得可怕。但是整个庞大的宇宙虽然由无数微尘组成,但是所有事物的运行规律都像是有着一套固定的法则。比如我们现在钻研和了解到的相对论、麦克斯韦方程组、牛顿力学等内容,都是宇宙暗含的法则之一。

有人怀疑人类的存在只是宇宙中的一个偶然,但是如果这个偶然不复存在,那么这个世界还会有其他像人类一样拥有一定智慧的生命存在吗?如果人类是在地球上自然进化而来的生物,作为在地球上生存了几十万年的生物,人类为什么会被太阳晒伤?抛开人类本身,物理学界也有很多说不清道不明的规律法则。

比如光速是物质能够达到的速度上限,是物理学中的一个常数。但是如果光速不是现在的299792458 m / s(米/每秒),而是另外一个数值的话,精细结构常数就会发生改变。一旦精细结构常数发生变化,那么电磁相互作用强度乃至恒星聚变过程都会发生改变。如果宇宙中的法则被意外打破,或者失去平衡,或许所有的事物都会被吞噬或者消失。

比如宇宙中的碳和氧都是恒星所释放的能量。如果光速改变精细结构常数也会随之改变,而光速变快的话,精细结构常数就会变小,那么恒星内部就不能形成和释放氧气。如果没有氧,地球上就不会有生命存在。

我们都知道宇宙来自于一场大爆炸,大爆炸以后诞生了无数天体星系。在宇宙之中,不论是微小的粒子还是巨大的星系都有一套运行法则。所有的元素互相配合、互相影响才形成了现在的宇宙。比如正负电荷的数量就大致相同,所以宇宙中物质的“天平”才没有失衡倾斜。假如正负电荷或者其他数据出现了倾斜,那么我们眼中的世界或许又是另外一副模样。

比如引力常量万有引力常量G=6.672x10^-11 N·m²/kg² (牛顿平方米每二次方千克)。也就是说不论是哪两个质点可以通过质量、距离等数值计算出它们的引力。但是一旦引力发生变化,我们眼前的宇宙都将有可能不复存在。假如引力太大,所有的物质都会被吸入黑洞。假如引力太小,物质之间的吸引不够紧密,就无法融合形成天体和星系。

所以杨振宁才会怀疑宇宙的出现并不是偶然,和爱因斯坦一样怀疑世间有造物主的存在,在背后安排好了宇宙的一切。但他们的怀疑并不是说又有一个无所不能的神创造了宇宙和世间万物。他们是想探索到科学的尽头,看看宇宙中所有事物发展是不是都是按照一定的法则运行的。因为如果没有这个运行法则,我们的宇宙也许根本就不会存在。这样来说,爱因斯坦和杨振宁的怀疑也许都是对的。

谁安排了宇宙的一切?

我们看到了一颗石头,我们不会问是谁创造了石头。因为石头形态结构简单而且随处可见,所以很难让人感到惊讶或者好奇。但是如果我们看到了一座宫殿。宫殿高大巍峨,墙壁上有精美的彩绘图案,地砖和柱子上都是精致的浮雕。宫殿里的物品、装饰甚至佣人都和整个宫殿浑然一体。我们就会忍不住问,这是谁住的宫殿?

同样的道理,我们的宇宙有丝毫的偏差都不可能存在,但是宇宙中如此庞大的一切却始终在井然有序地运行着。如果宫殿的房主就是宫殿的造物者,那么宇宙的缔造者又是谁呢?

我们的科学所发掘出的数据,只是找到了宇宙运行的一部分规则。不论我们有没有发现它们,不论我们有没有用公式的方式去表述它。这些宇宙暗含的法则始终都存在,这些规律是我们任何人都无法左右和改变的内容。

如果说庞大的宇宙就是一座放满了外语书籍的图书馆,我们人类就是目不识丁的孩童。爱因斯坦、杨振宁之类的科学家,有人发现了书架的摆放顺序,有人自学了两行外语。而我们大多数人都只是庸庸碌碌地生活,甚至从来没有思考过自己身处在一座图书馆里,更没有思考过这座图书馆是谁建的。

但是也有很多人对宇宙的存在有着不同的见解。比如电影《喜马拉雅星》说,所有世间万物都是梵天做的一场梦。等到梵天醒来,世间万物就会消失。等到梵天睡着,世间万物又会逐渐出现。所有的死亡都代表了重生,所有的结束都意味着新的轮回。

再如著名的动物园假说中指出,包括人类在内的所有地球生物都是被外星高级文明圈养在笼子里的动物。我们所有人的一举一动都被外星文明时刻监控着。

不论是何种说法,宇宙中确实还有很多神秘的现象等着我们去发现。在科学高速发展的今天,越来越多的谜团已经逐渐被解开。相信在不遥远的未来,我们一定可以解开宇宙最根本的奥秘,找到宇宙的“创造者”。
#哪句话改变了你的认知#


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 不过补充得也比较快就是了)之类的,还有温度,还有什么吃了蘑菇好像会有个什么”蘑菇之元“的buff还是啥的我也没细看;料理烹饪好像也是有不少设定;然后还有什么雾气
  • 家是避风的港湾,家是妈妈惦念的一句叮嘱,一想到家,心情便久久不能平静,仿佛只有吃到妈妈亲手包的饺子才叫过年,不知道什么时候,年味似乎慢慢变淡了,也许是我们离开中
  • 爷爷每晚遛狗的时候,壮壮会溜出家门爬到树上目视他们远行,家门口到养老院这段遛狗路对于50cm的小猫来说怎么算不上一次远征呢鸡胸肉壮壮也很乐意跟两只馋狗分享,就算
  • ” 看自己和周围的朋友,年轻时多美好的爱情,现实都是兰因絮果,从年少倾心变成相看生厌,这就是人间常态吧。 情人节也罢,这世上永远的情人一定是自己,好好珍爱自己
  • 好想你礼盒合集 【42.9元】零食大礼包年货礼盒花开富贵1356g 【44.9元】红枣黑芝麻丸礼盒675g 【59.9元】180g*3阿胶固元糕含
  • 下午海南三亚湾随拍SYX起飞爬升的 B-301D Sichuan Airlines Airbus A350-941 - cn 060,B-3098 Privat
  • 我也不知道为什么我能关注一个人这么久,兴许是共鸣吧,在好几年前,我天天做梦,做梦给我带来的不是新奇,喜悦而是疲惫,厌烦,直到某一天我看到了那位太太的文,我点进她
  • 以服务人民为荣、以背离人民为每日一善文案 以热爱祖国为荣、以危害祖国为耻。以服务人民为荣、以背离人民为每日一善文案 以热爱祖国为荣、以危害祖国为耻。
  • 所以最后的收获以“法上应舍,何况非法”来结尾,晚安。在这里我们认识到,佛陀身上的魅力之所以能够在世间永恒变与不变的长河里一直熠熠生辉,是因为佛陀通过自己的探索彻
  • 很喜欢整个影片乐莹都是小小的声音,没有爽文大女主的“飒爽”但那还是乐莹,她一如既往的善良,却又多了一份坚定,她从未想向众人展示什么很喜欢大老师的片尾曲,虽然还没
  • 正义哥开始犯贱:没有哦,他从来不说家人的事,我也是到韩国以后才知道他有叔叔的。”200猜想老板这样做只是好奇对方要说啥,也想加入他们的谈话正义哥向老板露出了礼节
  • #姆巴佩二选一# 来自运动世家,4岁就开始踢足球——姆巴佩在1998年出生于法国首都巴黎东北部的郊区市镇邦迪,父亲是一名足球教练,母亲则是退役的手球选手。从小姆
  • ”她被王鹤棣说的心里软软的,红着眼睛搂紧他:“嗯…知道…我也爱你…”对啊,梦终究是梦。”虞书大概和他说了一下梦,王鹤棣了解了之后笑着问:“所以就是最后我们俩分散
  • 金希澈这会可不是来找这种乐子的,他也不是那种稍微闻一下omega信息素就发情的家伙,刚想把人推开拒绝,低头却看见对方红着脸含泪瞧他。大概是这个omega长得太漂
  • @摩登兄弟刘宇宁 刘宇宁一念关山[给力]刘宇宁珠帘玉幕刘宇宁魏劭[给力]刘宇宁折腰刘宇宁卓不凡[给力]刘宇宁天行健刘宇宁帝林[给力]刘宇宁紫川摩登兄弟刘宇宁[虎
  • 其实我想说,沧州和济南还是颇有渊源的,在沧州博物馆里有一件汉代的彩绘陶乐舞杂技陶俑(仿制)虽然没有标记这件珍品在哪,我想说的是,这幅作品就珍藏在济南市博物馆里,
  • 没有人能修爱,爱也没法修,它本就在空性中绵延无边……在生活中越是真诚的人,越接近于道,走在道上,所言所行即是爱。”  旁边的于父戳戳他,“嘿老伙计,你闺女在旁边
  • 最为复杂的二个玩偶,布娃娃对板定染五个颜色纱采用高密度进口机做经纬为:170*140超密五色提花,帽子和围巾处采用60支精棉做二色多花型提花,面料完成后采用全人
  • mami x Pooh PavelGrand Opening & Press Conference“Perfect Love With POOH-PAV
  • 其他类型亲子鉴定收费2.青岛个人隐私亲子鉴定:约2000-2600元青岛个人隐私亲子鉴定可以自行完成,无需到鉴定机构现场,可以秘密收集样品送鉴定机构,也可以匿名