【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL

【冰有弹性,可弯曲?科学家用冰制备光纤】生长成单晶微纳光纤的冰,居然在性能上与玻璃光纤相似,既能够灵活弯曲,又可以低损耗传输光。浙江大学光电学院教授童利民团队在长期研究中发现了这种奇妙的现象。他们联合来自交叉力学中心和加州大学伯克利分校的合作者,实现用冰制备光纤,相关成果https://t.cn/A6fK9Vey于7月9日发表于《科学》。

△ 从不可能到可能

在人们的常识中,冰是一种透明易碎的脆性物质,没有弹性、无法弯折。

从古至今,人类对冰的好奇心从未停息,人们对冰进行了广泛深入的研究,从冰的高压相、二维结构等新形态,到电子束光刻等应用探索,对冰的认识和应用能力得到了很大的提升。

但能否用冰来制备光纤?在长达4年的研究中,童利民团队给出了肯定答案。

图1:研究团队生长的直径均匀的冰单晶微纳光纤。

我们通常认为,冰是一种脆性的易碎物质,已有的实验数据也支持上述认识,目前实验测到的冰的最大弹性应变为0.3%左右,大于这个值就会碎裂。

虽然理论计算曾预测,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

另一方面,光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。常规的玻璃光纤,主要成分为氧化硅(石英沙),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性,被“光纤之父”高锟先生称为“古沙传捷音”。 实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水,童利民团队提出能否用冰来制备光纤?

△ 首次实现冰的弹性弯曲

“这是一个令人好奇的、有趣的问题,大约8年前,我和通讯作者之一、浙大光电学院副教授郭欣就讨论过这个想法,但由于所涉及的实验条件和技术要求很高,一时难以开展。” 2017年,在讨论二年级博士生许培臻的研究方向时,童利民再次提到了用冰来制备光纤这个想法,成果第一作者之一、当时正在准备本科毕设的崔博文,也加入了这个项目。童利民说,他们专注的研究态度和出色的实验动手能力,为实现这个想法提供了可能性。

另外,当时学校刚成立了冷冻电镜中心,为低温下的结构表征提供了研究条件。

在这项研究中,结构制备是关键的第一步。研究团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,成功生长了直径从800纳米到10微米的高质量冰单晶微纳光纤。在冷冻电镜下,验证了这些沿c轴生长的冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“作为光纤,必须能够自由弯曲,才会更有用。”童利民说。为了探索冰微纳光纤的力学性能,研究团队发明了一套低温微纳操控和转移技术,实现了液氮环境下微纳结构的灵活、精确操控。在零下150℃的冰微纳光纤中,获得了10.9%的弹性应变,接近冰的理论弹性极限(远高于此前报道的最高0.3%的应变实验值),实现了冰微纳光纤的灵活弯曲。

△ 未来应用潜力广泛

冰的分子结构随压强改变而发生相变,一直是研究者们感兴趣的问题。

但是,由于产生相变所需的压强通常在数千个大气压以上,需要使用特殊设计的金刚石压砧等设备来获得,实现条件不易。

研究团队发现,通过大应变弯曲冰微纳光纤,有可能为相变所需的高压提供一种简单的解决方案。“拉曼光谱是检测相变最灵敏的方法之一,我们现代光学仪器国家重点实验室在光谱测量技术方面有很好的基础。”郭欣说。

为此,研究团队研制了一套结合低温微纳操控的原位显微拉曼光谱测量系统,通过弹性弯曲冰微纳光纤并原位实时测量最大应变区域的拉曼光谱,发现应变超过3%时,就可以出现冰从Ih相(常压相)转变为II相(高压相之一)的特征拉曼峰。

同时,通过弹性弯曲还可以为冰施加超过一万个大气压的负压,这是目前其他实验方法难以做到的。因此,上述弹性弯曲技术为冰的相变动力学研究提供了一种新的实验方法。

更进一步,材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由H2O分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。

论文评审专家认为这项研究是“对冰物理认识的重大进步”,所展现的力学和光学特性“无疑是有趣的、独特的,具有潜在的实际应用价值”。

童利民认为,对于冰这样一种自然界中最普遍、但又最神奇的物质,相信该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。https://t.cn/A6fK9VeL

高情商:天然
低情商:笨蛋

与天空飘落之星
说到老家,可以说它是与世隔绝的陋地,但是天空中氧气稀薄,可以说是“人味稀薄”,所以把老家认为是一种近乎真空状态的远离尘世的遥远天空也没有错,而彩就是从这片天空中飘落的星星,飘落意味着过程并非自主,他是被迫有目的地按照规则飘落,又被规则所束缚(抓他哥回家),但是这不妨碍他就是一颗天降之星,没人会在意他来自的那片天空是否含氧量低,因为他此时此刻是一颗无比耀眼的令人光是见着就觉得幸福的星星。


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 早晨五点半起床7点半的高铁 两个半钟到达釜山站出了釜山站坐地铁并换乘一次到去往镇海的汽车站到了镇海汽车站再搭公交车才抵达到这个神仙地方实不相瞒,整个镇海的路边都
  • シリーズのオールナイトニッポンGOLD」放送❗️メインパーソナリティ 高坂穂乃果役新田恵海さん μ’sから 園田海未役三森すずこ さんAqours から 松浦果
  • 筱鱼导师都将为你解答呦~【分享嘉宾】筱鱼【嘉宾简介】✨视觉记录师吃好奇长大的脑洞少女手绘er中最靓哒烘焙仔烘焙界最鬼畜哒手绘er线上打卡群主理人贴身小物家主理人
  • 但是我想说,她缺少父母的陪伴,不负责任的长辈将她托付给恶毒的陌生人,让她在冰冷的海水里经历了难以想象的苦难,最后孤独地走了。有没有这类的文啊感觉会很带感[并不简
  • #周星驰[超话]##周星驰已结婚#真的让我哭成泪人的几句话 每次跟我姐说到感情的事我就很别扭 因为一直以来都是处于很尴尬的关系状态 我没办法去好好解释 所以这就
  • #LAURASTAR# #美衣物,净生活# Annaxo 是一位人气颇高的Ins及Youtube博主,她在使用 LAURASTAR Smart U 以后分享了
  • 这四年里我许多次与The Great War这个话题不期而至的撞个满怀,仿佛我的命运在向我暗示。航行在新大陆上,四年里我受过的所有的好与我四年里躲过或被砸中的所
  • 中国传媒大学电影学博士研究生黄瀚辉称,中国在科技及人工智能的投入有目共睹,中国高校在这一两年陆续开办很多相关的新科系,也是新生代的热门选修科技。【利用 AI 帮
  • #2018-2019星级社团#棋牌协会棋牌协会的小伙伴们在这里以棋会友,共同切磋棋艺,共同提高~协会举办了十七年象棋大赛,在2018-2019学年正式开设首届校
  • #618# 活动,多店同庆[给力][给力][给力][给力][给力][星星][星星] #京东# [星星] #网易考拉# [星星] #天猫国际# [星星] #苏宁易
  • 已经为政府、质监、公安、科技等众多部门提供了高效、专业、安全、可信赖的数字化服务,与传统企业单纯提供技术平台支撑的最大区别,八六三软件已经实现“产品平台+专家服
  • 昨晚做梦梦到穿好手术衣竟然没有洗手!吓死了!
  • 《与妻书》 意映卿卿如晤,吾今以此书与汝永别矣!吾作此书时,尚是世中一人;汝看此书时,吾已成为阴间一鬼。吾作此书,泪珠和笔墨齐下,不能竟书而欲搁笔,又恐汝不察
  • 我只希望那些年让我成长的人是他。为什么呢,是因为我跟他之间的这些经历,不管是好的、坏的、痛苦的,或者是给彼此造成阴影的,每一分每一秒我都不想拱手相让于人。
  • 所以对于各种“重生”类型的文章而言,就算主角心中存在遗憾,从B时间面上1时间点后做了不同的选择,导致之后的发展轨迹不同,也只是相当于重刷了副本而已,用不同的方式
  • 日本东京游攻略二:(美食)晚餐选了日本比较有名的网红店【烤寿司店】可以用谷歌或者百度地图搜索店名【KINKA】店铺不大,但是特别人气,今天我们没有预约,店员只给
  • 为引导社会各界感念师恩、礼敬教师,昨晚,我市在城市广场、世茂广场等全市十余处地标建筑大屏幕上共同显示“老师,您好”的字幕,为人民教师“亮灯”向他们致以节日的问候
  • 少搞些几把毛的事情了,你为她背叛天下吧,我求求你恋爱脑吧,在一起吧!一个背叛我的人,我不会再叫你这声闺蜜,你爱分手就分手,关我屁事,活该被渣男甩,从现在起做回我
  • 该清单禁止美企业在未经许可的情况下,向华为提供美国产品与服务。亚太日报综合 苏重北今年5月,美国商务部将华为列入“实体清单”禁止美国公司在未获得许可证的情况下向
  • 本赛季我们总的来说成绩不是很理想,但三名选手的入围足以说明,我们的竞速组,还是很给力的[good]希望各位多多支持我们的选手,预祝他们在亚洲杯取得好成绩,在国际