2019年4月10日,由多国天文学家合作的事件视界望远镜项目组(EHT),公布的一张黑洞照片,风靡全球。它被称为人类拍到的第一张证明黑洞真实存在的照片,并被认为再次证实了爱因斯坦引力理论。

  我们不否认该项目研究人员付出的努力和取得的成就,能得到这样的照片是一个很不容易的事情。但这其中也存在很多疑问,我们在此提出三个问题,希望参与实验的天文学家能够解释,并借此机会让公众了解事情的真相。

  一.照片中的黑洞是真黑的吗?

  这张黑洞照片(见图1)是用全球不同地点上八台射电天文望远镜,对室女座的M87星系(又称梅耶87星系)中心同时进行观测,将收集到的数据进行进行两年的分析和综合处理,在计算机上合成得到的。因此它不是真正的黑洞照片,当然这并不重要,重要的是图中的黑色区域代表什么意义。

  图1. 第一张黑洞照片(中间黑暗区是M87星系的中心)

  在一般人的印象中,天文望远镜是观测天上星光的仪器,接收的是可见光。射电天文望远镜与光学望远镜有所不同,是收集宇宙天体发射的无线电波的望远镜。在天文学的早期,没有人想到宇宙天体也会发射无线电波。直到1930年,美国贝尔电话公司的工程师卡尔·央斯基,发现来自银河系人马座方向的无线电噪音后,才引起人们的注意,并逐渐发展到现在的具有举足轻重的作用射电天文学。上世纪六十年代的四大天文发现:类星体、脉冲星、星际分子和微波背景辐射,都是利用射电天文望远镜获得的。

  我们知道,人的肉眼能看得到的是可见光,波长为0.4 ~ 0.78微米(1微米为百万分之一米)。波长比可见光短的是紫外线,X射线和伽马射线。波长比可见光长的是红外线,远红外线,微波,高频无线电波,中频无线电波和低频无线电波。广播、电视、手机等发射和接收的,是中低频无线电波,波长在几百上千米的量级。射电天文望远镜用的高频无线电波,波长在厘米和毫米级。在天体的光谱发射中,射电波只占其中非常小的一部分。只是由于这种无线电波穿透地球大气的能力比可见光强,用来观测天体有它的优势。

  EHT实验组的射电天文望远镜采用的是亚毫米波段,严格地说是1.3毫米无线电波。因此这次公布的黑洞照片,只针对波长为1.3毫米无线电波而言,图1中心区域的的无线电波发射能力很弱,我们只能在这种意义上说它是黑的。至于其他范围更广的波段上是否存在辐射,图片中心区域对其他波段的辐射是否也黑的,EHT实验组并没有给出说明。因此我们有什么理由认为,图1是一张真正的黑洞照片呢?

  图2. M87星系的光学照片

  事实上,用哈勃天文望远镜拍的M87星系的光学相片是图2,在其中心区是非常明亮的,根本看不到黑影。要证明它的中心存在类似与图1黑洞,就必须证明在这个区域中没有任何波长的光发射。因此所谓的第一张黑洞照片存在误导大众的嫌疑,它只是对于1.3毫米的波段,这个区域是黑洞,并没有证明这个中心区域对其他的波段的辐射也是黑的。如果采用红外光波段,可见光波段,紫外线波段,甚至X射线波段拍摄,这个区域也是黑的吗?这显然是不太可能的,至少EHT实验组目前没有证明这一点。

  因此图1不是一张真正的黑洞照片,要证明它是一张真正的黑洞照片,需要更多的证据。EHT实验组为什么就不能实话实说呢?这样浅显的道理,为什么就不懂呢?

  二.黑洞照片中为什么没有喷流的射电辐射?

  图1 的黑洞照片还有一个明显的漏洞。从图2右上方看出,M87星系中心有一条巨大喷流向外喷出。这在图3中看得更清楚,它是哈勃天文望远镜拍摄的M87照片。图中有一条蓝色喷流,其长度比M87 星系的直径还要长,并且是直接从星系中心喷出,场景非常壮观,显示存在异常剧烈的天体物理学过程。

  图3. 哈勃望远镜拍摄的M87星系喷流照片

  按照目前的天体物理学理论,射电天体发射无线电波的机理如图4所示。在星系中心前方有大片的气体星云,星云内有磁场。喷流中的带电粒子在磁场作用下被迫做旋进运动,根据麦克斯韦经典电磁场理论,就会发射电磁波。由于喷流中带电粒子的运动速度接近光速,就会发射出很强的无线电波,其强度可以超过带电粒子产生的可见光的强度。事实上,在目前的天体物理学中,天文学家主要依靠观测喷流过程产生的射电波来发现射电天体。

  图4. 射电天体发射无线电波的物理机制示意图

  比如最早的射电天体天鹅座A,就是通过这种喷流的射电辐射发现的。它是宇宙中离地球最近、最壮观、最强大的射电星系(见图5)。两个巨大的红色的瓣状结构,代表射电辐射。射电波通过狭长的喷流与中心椭圆星系相连,从一个瓣到另一个瓣的空间距离超过30 万光年。虽然喷流与星系中心的连接线没有图3那样明显,但它的存在使毋庸置疑的。图中心的白色区域隐约可见一条红色细线,从星系中心射出,直接与右边的红色区相连。无线电波辐射的强度是非常可观的,而且显然是从星系中心发出的。蓝色区域则为X射线辐射,具有椭球状分布。可见光频段的辐射却很少,几乎观测不到。

  图5. 天鹅座A的射电辐射。红色为无线电波辐射,蓝色为X射线辐射。

  在图4的黑洞吸积盘上,绕星系核运动的物质主要发射红外光,可见光和X射线等。虽然它们也会发射无线电波,但与喷流过程相比,发射无线电波的强度要小很多。在图1中,围绕黑洞中心区域的红色光圈实际上也是代表无线电波。它们原本都是看不见的,为了显示它们的存在,EHT实验组将它们涂上红色,看上去给人的错觉是,黑洞周围的物质发出可见光。

  然而奇怪的是,在图1的黑洞照片中,我们根本看不到M87发射无线电波的痕迹。图3中那条蓝线对应的射电波信号哪里去了?按道理,在图1 中应当有一条色彩强烈的红黄带,从黑洞中心斜穿到右上角,但却完全看不到,一点痕迹都没有。

  因此图1的黑洞图像是不真实的,至少是不完全的,EHT实验组一定隐瞒了什么东西。尤其是从图2和图3看出,这条喷流包含强烈的可见光,不能排除存在红外光和紫外光等其他频率的辐射。不论望远镜采用什么工作频率进行观测,都一定会在照片中留下痕迹。由此推断,图1中原来应当有一条从黑洞中心向外辐射的射线,但图像却被删除,以免黑洞只进不出的饕餮形象被颠覆。

  因此EHT实验组存在嫌疑,故意删掉从黑洞中心向外辐射的无线电波图像。这样做的动机是可以理解的,否则从黑洞中心向外吐出一条巨大的金黄色洪流,这张相片怎么可以称为第一张黑洞照片呢?

  这里就涉及到所谓的黑洞到底是一种什么东西?以及第一张黑洞照片是否证实爱因斯坦理论的广义相对论的问题。以下我们来讨论。

  二.黑洞照片证实爱因斯坦广义相对论了吗?

  首先要指出的是,所谓的黑洞不是爱因斯坦引力理论独有的,牛顿引力理论中也有黑洞。牛顿力学的黑洞如图6的左图所示,它是两百多年前由拉普拉斯提出来的,指的是如果一个天体的质量足够大,其中光是无法透射出来的。牛顿黑洞与爱因斯坦黑洞半径的计算公式完全一样,但二者的物理图像完全不一样。奇怪的是,现在的相对论专家总是告诉大家,黑洞了是爱因斯坦提出来的,根本不提牛顿黑洞。
  图6. 牛顿经典黑洞和爱因斯坦奇异性黑洞

  爱因斯坦黑洞则如图6的右图所示,它具有奇异性。黑洞的中心是一个体积无穷小的奇点,物质被压缩到一个点,密度无穷大。黑洞边界即所谓的施瓦西半径,施瓦西半径内部是真空。爱因斯坦黑洞是一个非常扭曲怪诞的东西,除了物质密度无穷大,最不可理喻的一点是,在黑洞内时间和空间要互换。通俗地说,就是说时间变成空间,空间变成时间。这种事情违背人类最基本的常识,与人类最基本的经验事实背道而驰,完全不可理喻。一个还点思维判断能力,理智尚存的人,怎么可能相信宇宙中存在这种东西?

  如果第一张黑洞照片证实了爱因斯坦理论,就请相关研究人员解释一下,在照片中哪里看出,黑洞内的物质被压缩到一点,视界内的其他点上是真空?同时请他们解释一下,从哪里看出黑洞内部时间变成空间,空间变成时间?如果他们给不出解释,凭什么认为,这张黑洞照片证实了爱因斯坦黑洞理论呢?

  相反,如果照片中是牛顿黑洞,则一切都是正常的。根据EHT实验组提供的数据计算,M87星系中心黑洞的质量是65亿个太阳质量,半径为10的13次方米,质量平均密度则为每立方米0.8千克。注意到地球表面大气密度为每立方米1千克,M87中心黑洞的密度比地球表面大气密度还低,远远不如太阳表层的物质密度。因此它一点也不吓人,与一般人想象的黑洞情况根本不一样。

  为什么会这样呢?因为根据黑洞半径公式计算,大黑洞的物质密度可以很低,小黑洞的物质密度才会很高。事实上,可以把我们目前观测到的宇宙看成一个牛顿黑洞。在宇宙外部看,光线也无法逃脱。但在宇宙内部一切正常,太阳照常发光,地球照样绕着太阳转,人类照常生活。这就是牛顿黑洞与爱因斯坦黑洞的本质差别,大家还会相信爱因斯坦黑洞存在呢?

  事实上,由于爱因斯坦引力场的非线性特征,用它来的计算物质绕黑洞运动是非常困难的,可以说几乎不可能的。因此目前天体物理学计算黑洞外吸积盘上物质的运动时,采用的实际上是牛顿引力的方法,最多加上一点洛伦兹变换。在这种情况下,洛伦兹变换具有绝对性,与爱因斯坦相对论无关。对于这种现状,相对论学者嘴上不说,实际上是心知肚明的。牛顿引力理论与爱因斯坦引力理论不是近似关系,而是完全不相容的两个体系。一个用力来描述引力,另外一个用时空弯曲来描述引力,它们是根本无法捏在一起的。爱因斯坦引力理论漏洞百出,在实际应用上是根本无法与牛顿理论抗衡 https://t.cn/R2LRpfr

怀孕后,整个人似乎都变得娇气了!
常常因为一些不大不小的事情哭鼻子
跟老公闹脾气,多难听的话也能说得出来。
可能孕期反应稍微有那么点大
不吃饭难受,吃饭更难受,睡觉不踏实。
不能吃饭却一直要吐实在是折磨的我不堪重负
不为人母,永远感受不到母爱的伟大!
这句话一点也不假
最近的一个月一直呆在公婆跟前
老两口真是把我宠成了公主
别说重活了
就连拿筷子端碗的小事都舍不得让我干
我躺着婆婆妈赶紧给我拉被子怕凉着
做好热乎的饭生怕凉了第一时间端到我跟前
看我捶腿就要过来帮我捏腿
公公爹更是下床就赶紧给我递鞋
喝叶酸就去给我倒水递给我
老公的两个姐姐也是对我嘘寒问暖,照顾有加
给我买水果,买孕期棉裤。
可能我上辈子拯救了银河系吧
最近跟老公分居两地,时不时心情不好微信上就要跟他闹个脾气,使个脸色。
(不是作,可能就是特殊时期脾气大了点)
直男癌的老公虽然不会甜言蜜语的哄我
但无论我对错,无论他是不是委屈
从始至终都是认错的模样。
自己的爹妈就不说了,远程的心疼
感谢这么多爱我的人
有你们的爱,再难受我也能忍受。
甜蜜的负担……

中国科学家发现锂元素丰度最高的巨星

来源:中国航天报

日期:2018/08/17



发现富锂巨星的示意图。中国科学院国家天文台供图

日前,以中国科学院国家天文台为首的科研团队依托国家重大科技基础设施郭守敬望远镜(LAMOST)发现了一颗奇特天体,它“居住”在银河系中心附近的蛇夫座,距离地球约4500光年。它的质量不足太阳的1.5倍,锂元素含量却是太阳的3000倍。更重要的是,它是目前已知的锂元素丰度最高的巨星。

锂元素为何备受关注?什么是富锂巨星?它从何而来?这一发现又有何重要意义?带着这些问题,记者采访了中科院国家天文台闫宏亮博士。

由锂元素引出的科学难题众多

说起锂元素,大家应该不陌生。它的原子结构非常简单,是化学元素周期表中的3号元素。金属锂呈银白色,是密度最小的金属,可以漂浮在水上。

日常生活中,我们常常可以看到锂的身影。比如,手机、平板电脑、电动汽车等都在使用锂电池供电。此外,锂元素还被大量应用于航空航天、国防军工等领域。

当然,锂不光出现在日常生活中,它也是天体物理中最受关注的元素之一。为何这么说?“因为锂可以用来追溯宇宙早期的一些信息,而且由它引出的科学难题实在是太多了!”闫宏亮说。

闫宏亮从这些难题中归纳出主要的三个,并称其为:一“少”、一“多”、“先多后少”。

一“少”,即古老恒星中的锂太少了。宇宙大爆炸产生了宇宙中最初的3种元素,分别是氢、氦和锂,诞生于宇宙初期的第一代恒星保留了这些元素。粒子物理学家们通过计算,可以推断每种元素究竟产生了多少。然而,从第一代古老恒星中实际观测到的锂含量与计算预期值并不吻合,只有计算预期值的1/3—1/2。

一“多”,即星际物质中的锂太多了。天文学家们又发现星际物质中锂的含量(锂与氢的比例)比大爆炸理论所预言的要高4倍左右。

闫宏亮说:“这就很奇怪了,和恒星不同,星际物质是存在于星系中的弥散物质,因其自身特性,按理说是无法产生锂的,必须要借助宇宙射线的帮助。不过即使算上所有可能性,产量也不到星际物质中锂丰度的一半。”

“先多后少”,则是指按大爆炸理论,所有的恒星在诞生之初都是含锂的,但演化到巨星阶段(恒星的老年阶段)时绝大多数的锂会被消耗掉。

“可是,像我们此次发现的这类富锂巨星的存在却无法用先前的理论来解释。这是为什么?”闫宏亮说。

为了解答由锂元素引出的这些问题,世界各国的科学家们一直在孜孜不倦地探索和前行。

富锂巨星不符合标准恒星模型

恒星如同人类一样,有诞生、成长、衰老和死亡的过程。而巨星阶段是恒星暮年的开始,几乎每一颗恒星都要经历这样一个阶段。闫宏亮说:“在标准恒星模型中,恒星在巨星阶段会把自身的锂元素‘消化’掉,成为一个在表面上几乎探测不到锂元素的天体。”

为什么会出现这种情况?

闫宏亮进一步解释:“恒星在进入巨星阶段时会出现体积膨胀的现象,它的半径一般会膨胀十倍或几十倍。同时,它的内部会产生很强的对流,从而导致锂从恒星表面被带入恒星内部。由于恒星内部温度非常高,锂就被消耗掉了。所以说,恒星在巨星阶段锂的含量应该是呈几十倍到上百倍减少的。”

这样的理论在很长一段时间内被认为是正确的。直到1981年,天文学家乔治·沃勒斯坦和克里斯·斯奈登利用一架小型望远镜发现了一颗特殊的恒星,它的光谱非常奇特,在本不该有谱线的地方发现了一条很强的锂线。他们觉得这种现象极为罕见,也无法给出确切的解释。这种特殊的天体很快便成为大家关注的焦点,人们称其为富锂巨星。

那么,神秘的富锂巨星究竟是如何形成的呢?

闫宏亮说:“关于富锂巨星如何形成至今没有定论,但主要有两种理论猜测:一种认为是恒星吞噬了自己的行星,‘霸占’了原本属于行星的锂元素;另一种则认为这些锂元素来自恒星内部,巨星可以形成铍的同位素,而这种元素很容易衰变成锂。”

闫宏亮认为第一种猜测还是有一定道理的。“由于锂元素易消耗的特性,这种元素在行星中反而更容易稳定存在。”至于第二种猜测,他认为困难的地方在于如何让形成的锂元素不被恒星内部的高温所破坏。“这就需要一种运输方式将铍这种原材料快速搬运到恒星表面,让其在比较低温的区域变成锂。但这又怎样才能做到?”

富锂巨星数量稀少,须借助海量数据才能发现

为了搞清楚富锂巨星的来龙去脉,科学家们开始搜集这类天体样本。然而,他们发现富锂巨星的数量实在是太少了,大概只占巨星的0.5%—1%。

富锂巨星的数量如此稀少,必须借助海量数据才能发现。我国自主设计建造的郭守敬望远镜大规模巡天的开展,为搜寻富锂巨星提供了较大的便利。

闫宏亮说:“LAMOST以每年超过百万光谱的速度进行巡天观测,我们希望能通过这些海量光谱数据寻找到富锂巨星,然后进行仔细的研究,从而揭示其自身锂元素的来源之谜。”

闫宏亮介绍说,科研人员在最初寻找富锂巨星时主要是根据光谱。“因为光谱里都有谱线,每一种元素都会有相应的谱线与之对应。我们先找到有锂元素谱线的光谱,然后看一下这些谱线的强弱,把锂线很强的从中挑选出来。”

结果不负众望。不久前,科研人员终于在LAMOST海量的光谱数据中发现了一条罕见光谱,确定其来自于一颗锂丰度异常高的恒星。

“在初步确定之后,科研人员又利用自动行星搜寻者(APF)望远镜对其进行了跟踪观测”,闫宏亮说,“因为LAMOST光谱的数量非常多,但是分辨率相对比较低,不适合于针对某个恒星的细微观测,所以只能借助其他分辨率更高的望远镜。”

经过进一步的跟踪观测,科研人员发现这颗奇特恒星的质量为太阳的1.5倍,半径约为太阳的15倍,是一颗典型的巨星。接着,他们对其锂丰度进行了精确测量,发现这颗恒星绝对锂丰度高达4.51,是目前已知的锂丰度最高的巨星。

科研人员表示,这颗奇特恒星的发现刷新了人类对天体中锂丰度的认知,将国际上富锂巨星的锂丰度观测极限提高了一倍。

有了如此好的样本,科研人员的研究也随之又推进了一步。

闫宏亮说:“关于富锂巨星如何形成的第二种猜测是锂元素来自于恒星内部,但如何把锂带到恒星表面一直没有定论。寻找到这个样本之后,我们进行了数值模拟,结果表明借助不对称对流,产生如此高的锂是完全可能的。”

对此,闫宏亮打了个比方。“这种不对称对流就像是在恒星上安装了两种管道,一种是粗管道,一种是细管道。如果在固定的时间里流过相同量的物质,细的管道流速一定更快。这些铍元素就是通过这种快速管道迅速上升到恒星表层,进而在那里形成了锂。”

闫宏亮表示,这是我国科学家提出的独树一帜的新观点,在一定程度上改变了人们对富锂巨星的传统认知。

LAMOST光谱巡天还在继续。接下来,人类是否能够发现锂含量更高的天体?究竟是什么机制触发了增强的不对称对流……这些还需要科学家们不断去探索和发现。

吴月辉


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • #sky光遇黑市[超话]#华渠光遇集结-表演(破碎有卡没毕业,欧若拉有卡每天做任务可以毕业)亮点:武士裤,小王子击剑裤,巫师头,箬笠,围巾斗,小王子星球斗,瑞雪
  • 不知道这样的坚持有什么意义兵荒马乱的白天抵挡不住夜深人静的夜晚情绪涌起犹如洪水猛兽向你伸出恶魔之手一点点吞噬内心那团燃烧的烈火慢慢化为灰烬苍白又无力时光啊时光一
  • 关于八宅的运算方法,很多书中都以房屋的大门与八个卦位关系来确定,笔者认为这种方法有不妥之处,特别对一些城市中的单元套房,房屋大门实际上只是代表一个进出口,却不能
  • 难道不应该黑芝麻磨成粉再做芝麻丸么[笑cry][笑cry][笑cry]【红豆薏米丸】跟吃药一样的,这个也太难吃了我的天,和想象中味道差距太大[伤心][伤心][伤
  • 当第一次出现回调过程中,回调得越猛,量越大,那么继续创出新低的概率是越高,就更不能盲目进场抄底,但是如果在出现这种比较猛回调过程中都没有创出新低,反而把这种放量
  • 九尾选手,我喜欢你呐,加油,为了你赢了之后的发言我都已经开始积攒泪水啦,真的很想跟你一起,共淋金色雨。我想说,九尾选手你真的超级好,对粉丝好,事事也考虑着我们,
  • 食材新鲜,都是空✈️运来的,这样的品质,放眼整个沈阳应该也不多见吧! 长沙办年会,大城里的小爱,一座城里面返璞归真的美食-画意江南你有过这样的经历吗,驱车好几个
  • 超级推荐娇 宠文学/宁静文学看小说 《白喻许丘铭》(热门推荐小说) 《云慕歌君临辰》(热门推荐小说) 《阮溪程俞》(热门推荐小说) 《陆爷霸爱上瘾戚沫陆南修》(
  • ✅水光针是一项基础项目,主要作用是补水保湿,基本上人人都适合,每隔一段时间打一次能让皮肤一直保持一种水嫩的状态。有些求美者反馈,在做了自体脂肪填充后,取脂部位和
  • 你‮赚所‬的每‮分一‬钱 都是‮这对‬世界‮知认‬的变现你所‮的亏‬ 是‮这对‬世界认知有缺陷世‮上界‬最公‮的平‬一件事是‮你当‬的知识‮财与‬富不‮匹相
  • 睡不着啊 心里就是牵挂着牵挂着……昨天和奶奶视频很晚 聊着聊着她手机没电了 关机了她充上电 给我打了两个视频过来我没接住 给她又打了过去 她急着看着屏幕说刚才没
  • 退游戏啦雲(表示):太平洋的水都放干了...#阴阳师[超话]##阴阳师手游# 第二届猜御魂大赛开启(本活动可在大神app搜CC南浔参与)一、游戏规则:根据本周提
  • _你十二年深沉的爱 你的缄口不言和等待 你爱我,一如后来我爱你[心]-穗穗:“世人各有各的苦,在我能看见的时光里,我要他也幸福.”“你不喜欢谁我就不喜欢谁”-“
  • 地址:17 St. Mary’s Street,Edinburgh, UkEH1 1TA 父亲节礼物推荐支持语音助手的蓝牙音箱爸爸的爱总是低调深沉的,在平常的
  • 2⃣ 啊啊啊啊啊啊我也好喜欢《唤》啊啊啊啊“when you baby call my name~”我超喜欢这一句呜呜呜3⃣ 花絮:“见面吧,这个炎热的夏天”啊
  • [允悲]我说是,正宗的中华田园犬,本国的品种狗[嘻嘻]然后和她聊了一些养狗狗的乐趣,我聊的眉飞色舞的,工作的压力顿时没有了,然后同事看我一脸震惊,你怎么懂这么多
  • 第二天上学的路上,一向温柔的母亲严肃地拉住 我,双眼注视着我,问我饰品是从哪里来的。说不过去吧我说[晕] 李薇必须救自己的姐妹,她能想到保全尹峥的办法也只有让他
  • 我们金狮子的爱火热的挥霍不完,但月双鱼又害怕分离,日土象又懒的变动就喜欢蹲一个人身上不动。心空警告别摘下星星给我了,这直接给我了一条银河这盘真的有够闪到飞起,✨
  • 我的先生是个很颇不同于他人的人。第一次见便是结婚那天。我身着父母亲准备的华服走下轿子就从盖头下面看到了他。清瘦,凌厉,攻击性强。拜堂时听他改口叫娘,声音好似潺潺
  • 翻开这本书,你会看到安德烈的家人们所从事的不寻常的工作,精美细致的插图更会带你深入了解不同的职业,助力你的梦想之旅!2、《未来的工作》适合爱幻想的孩子,未来有各