保和丸是一味经典方药,出自元代中医大家朱丹溪的《丹溪心法》,是中医消食化痰的代表方剂。

组成:山楂、神曲、半夏、茯苓、陈皮、连翘、莱菔子。

功效:可以消食、导滞、和胃,主要用于食积停滞、脘腹痞满、嗳腐吞酸、口气、矢气臭秽、呕吐泄泻,舌苔白腻或黄腻。

方解:其中的山楂、神曲、莱菔子都可以用来消食,但它们所擅长消化的食积类型不同。

山楂最善消油腻肉类食物所导致的食积;神曲能消酒食陈腐之积;莱菔子可以消化面食、痰浊之积。

食积易于阻气、生湿、化热,故以半夏、陈皮辛温,理气化湿,和胃止呕;茯苓甘淡,健脾利湿,和中止泻;连翘味苦微寒,既可散结以助消积,又可清解食积所生之热,均为佐药。

诸药配伍,使食积得化,胃气得和,热清湿去,则诸症自除。本方药性比较平和,又能和胃,故以“保和”命名。临床应用十分广泛。

消积食,腹胀不消化通常来讲,食物吃下去以后会进入胃里,胃就像一个袋子,可以容纳的东西是有限的,当饮食适量的时候,脾胃功能正常,能及时消化,但是如果吃进去的食物超过了脾胃的运化能力,不容易运化的食物滞留在体内,就感觉肚子胀胀的,很难受。这个时候,赶紧吃保和丸,朝服夕效。

四时感冒因食滞导致发热的患者,体温不高,一般不超过38度,发热头痛,消化不良,面红目赤,萎靡不振,肠胃不适,恶心欲吐,嗳腐吞酸,舌苔厚腻,用保和丸后,发热自愈。

减肥,降压降脂保和丸可以化痰祛湿,特别适合肥胖同时又伴有高血压高血脂的人。

因为它们本质上是一回事儿,都是没有燃烧干净的垃圾,留在身体里,那就是痰湿。痰湿堵在血脉里,叫高血脂;塞在肚皮上,叫小肚腩。

当身体里的痰湿被清除掉以后,我们的体重、血压、血脂就能回归正常。

大便粘腻不畅大便黏滞不畅是痰湿阻滞肠腑的特点,痰湿的根源在胃肠,食积伤脾生痰,胃肠功能失调也生痰湿,这些都会导致大便不成形、排便费力、有排不尽的感觉、大便黏便池等,这时,及时服用保和丸每次1丸(大蜜丸),1日2~3次,同时注意避免暴饮暴食、晚上适当减少饭量。

湿疹、荨麻疹当一个人胃肠有积食的时候,积食久了会产生热,这个热往外走,往外发,就像蒸馒头一样,揭开锅盖的一瞬间,锅里的热气扑面而来,身体里的燥热也要往外发,那些藏匿在身体里的浊水浊物随着热气一起被带到皮肤肢节,郁积在皮下,就容易发为湿疹、荨麻疹等等。

可见皮肤病只是影子,有积食才是根子,保和丸可以让有形的积滞从二便排出,使邪气走开,不在里面为非作歹,等于拔掉了根子,影子自然就没有了。

便秘、腹泻肠道最常见的问题就两个,一个是太通了,一个是太不通了,太通就腹泻,太不通就便秘。

积食堆积在肠道里,导致胃肠道蠕动能力下降,便秘就来了。这个比较好理解,那腹泻又是怎么回事呢?原来这是胃肠功能还可以,还没有那么糟糕,它就会想办法把积滞排出去,这个时候,就导致了两种情况,要么便秘,要么腹泻。

保和丸可以消食导滞,积滞没有了,便秘和腹泻也就消失了。

失眠中医讲,胃不和则卧不安。是说晚上睡觉前吃得太多,太饱,胃气不能循着正常的通道下行,就睡不踏实。保和丸把胃肠清空,自然就睡安稳了。

反复发作的口腔溃疡有一种口腔溃疡是因为胃肠积热,很多人都有这样的体会,最近一段时间老是熬夜加班,再加上吃吃火锅,吃吃烧烤,这些肥甘厚味的食物堆在肠胃里,消化不掉,嘴巴就长溃疡。溃疡虽然长在上面,而热却是从下面的胃肠蒸上来的,保和丸清热祛湿,是治标;消食导滞,是治本。

牙痛牙痛也是胃肠积热,循经上攻到牙龈,这种牙痛有个特点,痛起来很快,很猛烈,这个时候,也可以服用保和丸。

化痰平时如果发现自己舌苔很腻了,比如经常饮酒,吃油腻、甜的、黏的食物,脾胃运化不好一定会生痰,反映在舌头上,就是舌苔厚腻,嘴里不清爽,这个时候,吃点保和丸,有助于体内痰浊的排出。

口臭口臭是很多人的烦恼,让我们在社交中变得尴尬起来。那么口臭怎么去除?

中医里,口臭源于心脾之火太过,尤其是当脾胃有积食的时候,积食化腐,化浊,腐败的浊气往上泛,就会口臭。保和丸把肠道里的浊物打雷下雨一样排出去,口臭就会自动消失。

慢性乙肝慢性乙肝患者常见的症状有食欲不佳、饭后胃肠不适、晨起咳痰、恶心等,可以适当服用保和丸来化痰和胃、降逆止呕。

服用保和丸的注意事项:
1.服药期间,要注意清淡饮食,不宜饮酒或食用辛辣刺激、生冷、油腻的食物。

2、服药期间,避免与含有人参、党参、西洋参等滋补类药物同服。

3.服药三天症状无改善,或出现其他症状时,应立即停用,并到医院诊治。

4.对本品过敏者应禁用,过敏体质者慎用。

5.身体虚弱或老年人不宜长期服用。

6.儿童必须在成人的监护下服用;在应用时,其用法用量还应咨询专业医师或药师。

7.孕妇及哺乳期妇女需谨慎服用。

保和丸用途广泛,用好了能调很多病,但它肯定不是万能的。任何中药、中成药都需要辨证,需要在专业医师的指导下使用。

#芯片# 【第三代半导体来了!芯片版图会改写吗?】作为当前芯片制造行业的主流技术,硅基互补金属氧化物半导体(CMOS)技术已“接近物理极限”。这也意味着,“弯道超车”的机会越来越渺茫,“多道赛车”成为业内的选择。

最近,香港科技大学和南方科技大学研究人员分别在《自然—电子学》等期刊发表论文,报道了“氮化镓基互补逻辑集成电路”和“氮化镓高压多沟道器件技术”领域取得的突破,这或成为第三代半导体赛道上的一抹曙光。

适时的工作:氮化镓基互补逻辑集成电路

硅基互补金属氧化物半导体可以获得极高的能源效率,与此同时,硅材料较窄的带隙也限制了硅基集成电路的使用场景。

而宽禁带半导体,如氮化镓等在电力电子、射频电子、显示照明和严酷环境中的出色表现,让人们对其应用前景充满期待。由于缺乏在单个衬底上集成n沟道和p沟道场效应晶体管的合适策略,氮化镓基CMOS逻辑电路的开发进程缓慢。

“我们首次展示了一个完整的基本逻辑门集合,以及多级逻辑门集成更复杂逻辑电路的能力。”香港科技大学教授陈敬说,“这种氮化镓互补型逻辑电路拥有一系列‘类CMOS’的优点。这些电路可以工作在兆赫兹频率,并且拥有出色的热稳定性,一定程度上体现了宽禁带半导体的优势。”

在该研究中,陈敬团队制备了完备的基本逻辑门集合——包括非、与非、或非和传输门。其中,以反相器为代表的逻辑门展现出100%轨到轨输出能力、显著抑制的静态功耗、良好的热稳定性和充分的噪声容限,单项指标与综合性能均为已报道的同类反相器中之最佳。

“这是个很漂亮而且很适时的工作。”瑞士洛桑联邦理工学院微纳技术中心博士刘骏秋在接受《中国科学报》采访时表示。

除了完备的单级基本逻辑门,陈敬团队进一步展示了由多级互补型逻辑门组成的拥有较高复杂度的集成电路。多级集成能力的证明,对将氮化镓基CMOS技术推向实用具有重要意义。

南方科技大学电子与电气工程系助理教授马俊认为,该技术首先可用于开发高能效的新一代电能转换芯片——氮化镓电力电子集成电路,对降低电能损耗和减少碳排放具有非常重要的意义;其次能扩展氮化镓的应用方向,例如用于开发航空航天等需要耐受严酷环境(高温、辐射等条件下)的新型特种计算控制芯片。

“该论文是氮化镓集成电路方向的重要里程碑,对氮化镓基芯片的发展具有重要意义。”马俊告诉《中国科学报》。

基础器件突破:氮化镓高压多沟道电力电子器件

作为第一代半导体材料,锗和硅已在各类电子器件和集成电路上广泛应用。以砷化镓和磷化铟为代表的三五族化合物半导体材料被认为是第二代半导体,它的某些性能优点弥补了硅晶体的缺点,从而生产出符合更高要求的产品。第三代半导体是以氮化镓、碳化硅、氧化锌、金刚石、氮化铝为代表的宽禁带半导体材料。在应用方面,第三代半导体在照明、电力电子器件、激光器和探测器等领域的产业成熟度各不相同,在一些前沿研究领域,宽禁带半导体还处于实验室研发阶段。

“第三代半导体材料领域的发展日新月异。”刘骏秋说,“比如氮化镓、碳化硅、铝镓砷等,主要用来制备电芯片。而光芯片领域,目前最成熟的材料硅、磷化铟已经以商业化为主。碳化硅目前已经开始从实验室走向成熟产业和商业化,而铌酸锂材料目前中国的研究也很前沿,很多大学都有相关的研究。值得一提的是,国际与国内很多领先的研究组已经开始研究利用第三代半导体材料实现光电集成。”

在发表于国际电子器件大会(IEDM)和《自然—电子学》的文章中,马俊团队和瑞士洛桑联邦理工大学、苏州晶湛半导体有限公司合作,通过原创性的高压多沟道电力电子器件技术,开辟了氮化镓电力电子器件研究的新领域,“有可能改变第三代半导体电力电子器件技术发展的趋势”。

“现有氮化镓电力电子器件的主流方案是硅基氮化镓器件,其品质因子受击穿电压和导通电阻的基础性限制,远未达到氮化镓材料的理论极限,近10年来进步甚微。”马俊说。

为解决这一问题,马俊等人用高压多沟道器件技术,在获得1200V高击穿电压的同时将器件的导通电阻降低为原来的1/5,将硅上氮化镓电力电子器件品质因子的国际纪录提升了4倍。

此后,马俊又以共同第一作者,将该技术的后续工作——1300V的常关型多沟道硅基氮化镓高迁移率晶体管研究成果发表于《自然—电子学》。

“这项工作是氮化镓电力电子器件领域的重大进步。”氮化镓电子器件领域专家、英国布里斯托大学教授Martin Kuball在《自然—电子学》撰写专文评论说,“该技术使氮化镓器件的性能大幅接近其理论极限,且显著地超过了现有的碳化硅器件。”

《自然—电子学》在其编辑部报道中提到,“我们重点推荐的第三篇文章是学术界和工业界的合作成果,即马俊、Elison Matioli和他们同事汇报的多沟道器件技术”,展示了该技术巨大的价值和潜力。

基础+集成:改变行业版图

“氮化镓电子器件及集成电路家族因氮化镓基CMOS的加入而更加完整,实现氮化镓基计算控制芯片已经成为可能,氮化镓电子技术的应用领域会进一步扩展。”陈敬说,“以高电子迁移率晶体管(HEMT)为代表的n沟道氮化镓器件已历逾25年的研发,近年来已开启了快速商业化的进程。”

“氮化镓基芯片未来的发展将有很大可能呈现‘基础化+集成化’的趋势。”马俊说。

马俊解释说,基础化是因为现有氮化镓电子器件的性能远未达到氮化镓材料的理论极限。因此,氮化镓基芯片的未来发展将首先聚焦于新型基础性器件技术的开发,寻求基础元器件性能的突破性进展,达到全面利用氮化镓材料性能优势的目的。

例如,在氮化镓材料擅长的射频和电力电子领域,新型的多沟道结构和纳米结构等技术正在推动氮化镓射频电子器件和电力电子器件性能的成倍提高,远远超出传统的硅器件和现有的氮化镓器件。同时,高性能的p沟道晶体管对氮化镓互补性逻辑电路的进一步发展也至关重要。

“这些基础器件性能的突破,将为氮化镓芯片的未来发展提供更广阔的可能。”马俊说,“集成是半导体发展的重要目标,氮化镓基芯片的未来发展也将沿着集成化的方向发展。”

马俊认为,集成化主要体现在两个方面。一是氮化镓器件家族将不断扩大,包括氮化镓互补型逻辑门技术和肖特基二极管等关键基础单元,将向着实用化方向不断完善,最终形成完整的氮化镓射频电子和电力电子集成电路解决方案;二是氮化镓与传统硅基材料和芯片的集成技术也将不断发展。根据不同的应用,通过异质集成、片上集成、封装集成等多种方法,选择并集成最适配的硅基和氮化镓基芯片,形成最佳性能与最优成本的集成电路解决方案。

我们期待,芯片制造业的版图将因第三代半导体驶入赛道而改变。https://t.cn/A6M7chvO

【第三代半导体来了,芯片行业会“变天”吗?[思考]】5纳米、2纳米、1纳米……作为当前芯片制造行业的主流技术,硅基互补金属氧化物半导体(CMOS)技术已“接近物理极限”。这也意味着,“弯道超车”的机会越来越渺茫,“多道赛车”成为业内的选择。

最近,香港科技大学和南方科技大学研究人员分别在《自然—电子学》等期刊发表论文,报道了“氮化镓基互补逻辑集成电路”和“氮化镓高压多沟道器件技术”领域取得的突破,这或成为第三代半导体赛道上的一抹曙光。

相关论文信息:
https://t.cn/A6M7chv0
https://t.cn/A6M7chvN
https://t.cn/A6M7chvp

【适时的工作:氮化镓基互补逻辑集成电路】

硅基互补金属氧化物半导体可以获得极高的能源效率,与此同时,硅材料较窄的带隙也限制了硅基集成电路的使用场景。

而宽禁带半导体,如氮化镓等在电力电子、射频电子、显示照明和严酷环境中的出色表现,让人们对其应用前景充满期待。由于缺乏在单个衬底上集成n沟道和p沟道场效应晶体管的合适策略,氮化镓基CMOS逻辑电路的开发进程缓慢。

“我们首次展示了一个完整的基本逻辑门集合,以及多级逻辑门集成更复杂逻辑电路的能力。”香港科技大学教授陈敬说,“这种氮化镓互补型逻辑电路拥有一系列‘类CMOS’的优点。这些电路可以工作在兆赫兹频率,并且拥有出色的热稳定性,一定程度上体现了宽禁带半导体的优势。”

在该研究中,陈敬团队制备了完备的基本逻辑门集合——包括非、与非、或非和传输门。其中,以反相器为代表的逻辑门展现出100%轨到轨输出能力、显著抑制的静态功耗、良好的热稳定性和充分的噪声容限,单项指标与综合性能均为已报道的同类反相器中之最佳。

“这是个很漂亮而且很适时的工作。”瑞士洛桑联邦理工学院微纳技术中心博士刘骏秋在接受《中国科学报》采访时表示。

除了完备的单级基本逻辑门,陈敬团队进一步展示了由多级互补型逻辑门组成的拥有较高复杂度的集成电路。多级集成能力的证明,对将氮化镓基CMOS技术推向实用具有重要意义。

南方科技大学电子与电气工程系助理教授马俊认为,该技术首先可用于开发高能效的新一代电能转换芯片——氮化镓电力电子集成电路,对降低电能损耗和减少碳排放具有非常重要的意义;其次能扩展氮化镓的应用方向,例如用于开发航空航天等需要耐受严酷环境(高温、辐射等条件下)的新型特种计算控制芯片。

“该论文是氮化镓集成电路方向的重要里程碑,对氮化镓基芯片的发展具有重要意义。”马俊告诉《中国科学报》。

【基础器件突破:氮化镓高压多沟道电力电子器件】

作为第一代半导体材料,锗和硅已在各类电子器件和集成电路上广泛应用。以砷化镓和磷化铟为代表的三五族化合物半导体材料被认为是第二代半导体,它的某些性能优点弥补了硅晶体的缺点,从而生产出符合更高要求的产品。第三代半导体是以氮化镓、碳化硅、氧化锌、金刚石、氮化铝为代表的宽禁带半导体材料。在应用方面,第三代半导体在照明、电力电子器件、激光器和探测器等领域的产业成熟度各不相同,在一些前沿研究领域,宽禁带半导体还处于实验室研发阶段。

“第三代半导体材料领域的发展日新月异。”刘骏秋说,“比如氮化镓、碳化硅、铝镓砷等,主要用来制备电芯片。而光芯片领域,目前最成熟的材料硅、磷化铟已经以商业化为主。碳化硅目前已经开始从实验室走向成熟产业和商业化,而铌酸锂材料目前中国的研究也很前沿,很多大学都有相关的研究。值得一提的是,国际与国内很多领先的研究组已经开始研究利用第三代半导体材料实现光电集成。”

在发表于国际电子器件大会(IEDM)和《自然—电子学》的文章中,马俊团队和瑞士洛桑联邦理工大学、苏州晶湛半导体有限公司合作,通过原创性的高压多沟道电力电子器件技术,开辟了氮化镓电力电子器件研究的新领域,“有可能改变第三代半导体电力电子器件技术发展的趋势”。

“现有氮化镓电力电子器件的主流方案是硅基氮化镓器件,其品质因子受击穿电压和导通电阻的基础性限制,远未达到氮化镓材料的理论极限,近10年来进步甚微。”马俊说。

为解决这一问题,马俊等人用高压多沟道器件技术,在获得1200V高击穿电压的同时将器件的导通电阻降低为原来的1/5,将硅上氮化镓电力电子器件品质因子的国际纪录提升了4倍。

此后,马俊又以共同第一作者,将该技术的后续工作——1300V的常关型多沟道硅基氮化镓高迁移率晶体管研究成果发表于《自然—电子学》。

“这项工作是氮化镓电力电子器件领域的重大进步。”氮化镓电子器件领域专家、英国布里斯托大学教授Martin Kuball在《自然—电子学》撰写专文评论说,“该技术使氮化镓器件的性能大幅接近其理论极限,且显著地超过了现有的碳化硅器件。”

《自然—电子学》在其编辑部报道中提到,“我们重点推荐的第三篇文章是学术界和工业界的合作成果,即马俊、Elison Matioli和他们同事汇报的多沟道器件技术”,展示了该技术巨大的价值和潜力。

【基础+集成:改变行业版图】

“氮化镓电子器件及集成电路家族因氮化镓基CMOS的加入而更加完整,实现氮化镓基计算控制芯片已经成为可能,氮化镓电子技术的应用领域会进一步扩展。”陈敬说,“以高电子迁移率晶体管(HEMT)为代表的n沟道氮化镓器件已历逾25年的研发,近年来已开启了快速商业化的进程。”

“氮化镓基芯片未来的发展将有很大可能呈现‘基础化+集成化’的趋势。”马俊说。

马俊解释说,基础化是因为现有氮化镓电子器件的性能远未达到氮化镓材料的理论极限。因此,氮化镓基芯片的未来发展将首先聚焦于新型基础性器件技术的开发,寻求基础元器件性能的突破性进展,达到全面利用氮化镓材料性能优势的目的。

例如,在氮化镓材料擅长的射频和电力电子领域,新型的多沟道结构和纳米结构等技术正在推动氮化镓射频电子器件和电力电子器件性能的成倍提高,远远超出传统的硅器件和现有的氮化镓器件。同时,高性能的p沟道晶体管对氮化镓互补性逻辑电路的进一步发展也至关重要。

“这些基础器件性能的突破,将为氮化镓芯片的未来发展提供更广阔的可能。”马俊说,“集成是半导体发展的重要目标,氮化镓基芯片的未来发展也将沿着集成化的方向发展。”

马俊认为,集成化主要体现在两个方面。一是氮化镓器件家族将不断扩大,包括氮化镓互补型逻辑门技术和肖特基二极管等关键基础单元,将向着实用化方向不断完善,最终形成完整的氮化镓射频电子和电力电子集成电路解决方案;二是氮化镓与传统硅基材料和芯片的集成技术也将不断发展。根据不同的应用,通过异质集成、片上集成、封装集成等多种方法,选择并集成最适配的硅基和氮化镓基芯片,形成最佳性能与最优成本的集成电路解决方案。

我们期待,芯片制造业的版图将因第三代半导体驶入赛道而改变。https://t.cn/A6M7chvO


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 上次过生日阮老师看到我朋友圈还特意给我送了包薯片[兔子]刘老师上课教的很好,她长得也好漂亮的,我也很喜欢她,还有宿管简老师[春游家族]和简老师没有特别多交流,每
  • [给力] 包含人员结构分析、变动分析、薪酬分析三大模块,11 个自定义分析维度,31个薪酬类别,一张图表可组合出多达[赞] 550 种变化,HR终于不再需要
  • #蹄蹄乐[超话]#还是那对笨蛋情侣(素番外)今天是那对笨蛋情侣在一起之后过的第一个中秋节,不知道朋友怎么想的突然说要给女朋友做一顿饭,给她一个惊喜所以一大早就起
  •   我以为他真心后悔,想和我复婚,哪怕我不接受,可是心里总有一些痛快,所以当我听到他和星彩公司合作,看到小猫落在游戏室的围巾时,那种像是被人耍了的感觉,又冒了
  • 想到哪里写哪里.jpg 自过了而立之年,白追寻就觉得自己心境愈发平淡,很难有外界事物对她的情绪造成长时间的影响。 这样好歹没有直观的的利益冲突,起码合作比较顺利
  • ——《眠》20.迟早要失去的东西并没有太多意义,必失之物的荣光并非真正的荣光——《1973年的弹子球》21.真正的生活应该是人与人坦率地正面交锋。——《我的职业
  •   包厢里的灯被切了回去,商亦棠的视力在光线暗的时候又不太好,加上她一开始又特意坐在角落,所以也看不见齐颂和盛勉君在哪里,心里又要松懈不少。”  虽然盛勉君的声
  • 为了保护好生态环境,王英镇本着有矿而不开采,有水而不投肥养殖的生态保护理念,在保障饮用水安全的前提下,广开新路,着力污水统一收集、旅游统一管理、农业统一转型、规
  • 相较于爱情可能面临更多的是前途未来,但它依旧告诉我:“珍惜来者,放下去者,对喜欢的人如此,对身边的人或许也应这样,无论是朋友还是爱人,都要放下,向前看,勇敢爱。
  • ❥⇢Good Morning……早安文案|早上好|早安心语|早安海报|早安图片|早安美图|早安精美句子|励志语录|早安世界|励志文案早安 #早安心语##正能量
  • #张小斐张嘉倪到底是在演什么#我人生中最讨厌的事 是生离死别 我总是不擅长别离 爷爷奶奶离开的时候我读小学 到如今快十年了 模模糊糊的记忆已经让我看不太清 只
  • #山西大同公安请为刘学州立案#那个可怜的命运像草一样的孩子,凭着长成大树的信念,越过无数黑暗,追逐着阳光生活了十五年。青春好像就是这样无法定义,随时倒戈,喜欢和
  • ​世界上的任何东西,都能轻而易举地背叛你,哪怕是一片阿司匹林也可以在你生龙活虎的日子里默默过期,在你头疼欲裂的时候失去作用。但是你需要的是保持努力,保持坦然,
  •   我以为他真心后悔,想和我复婚,哪怕我不接受,可是心里总有一些痛快,所以当我听到他和星彩公司合作,看到小猫落在游戏室的围巾时,那种像是被人耍了的感觉,又冒了
  • 因为喜欢你,我学会了剪辑视频,学会了超话发帖,学会了做表情包、小卡、应援手幅好多技能,同时让我也认识了许多真诚的们,也许素未谋面,但我感受到了温暖,哇原来也是有
  • 如果我知道此时此刻,姜诀就在出口处看着我们,那我绝不会做出用仙女棒许愿,大喊“姜诀去死吧”这种话。 如果我知道此时此刻,姜诀就在出口处看着我们,那我绝不会做出
  • 这是我何德何能在内娱嗑到的,滨炯这售后[开学季][开学季]这营业,虽然日韩泰欧美到处乱磕,但还是国耽的氛围营业最适合中国宝宝体质[馋嘴][馋嘴]已经期待吻戏了,
  • 本文仅显示部分复盘,剧本杀《风林火山》整个复盘在唯型工仲皓: 【八八复盘】天呐校霸这个设定到底有没有具体定位啊…感觉给顺荣写这个难难的,因为我总感觉校霸就是小混
  • 结婚是个开端,双方父母依然要沿着婚姻的开端作为开始,为两个孩子借助各自家庭的优势弥补各自家庭的劣势,即便在普通人眼里他们一个家庭就很让人羡慕了,但是几个家长不约
  • 我们要在人生最痛的时候做出选择,这些选择会带出不一样的结果,是饶恕?‎眼里是你,心里也是你,后来我的眼里就有了星星⭐⭐⭐⭐#淦的一些笔记分享# 《你的决定逆转人