我又来啦。这次是关于腾讯云轻量应用服务器的使用心得和一些简单分析。

不久前我在博客发布过了一篇关于腾讯云轻量应用服务器的性能和网络分析,总体来说体验优秀。作为腾讯云轻量应用服务器第一批使用海外地域的用户,从申请内测使用至今,总体看来从产品功能到网络线路都有一些变化。

在性能方面轻量应用服务器分配的实例基于如下几种 CVM 机型:S2、S3、S4、S5、SA2这几种型号。处理器方面总体而言7K62≈8255C>6148≈6133>2680,此外由于迭代的原因在 IO 限制上也会略有差异, 总而言之同配置分配到越新的机型体验越好。

网络方面的几个变化。今年轻量服务器支持了自助更换公网IP的功能。香港地域的线路从之前的CN2切换到了三网直连,相对于带宽成本降低了,公网质量虽然不如之前的高端线路但是在正常使用环境下还是能很好的支撑。虽然我很怀念之前的香港CN2线路但是估计考虑到成本和Cn2资源滥用原因所以取消了[泪]

以上是我的一些总结,详细分析大家可看我的配图…

#开箱吧腾讯云#

【如何“脫離地球”更精確地測量宇宙時間?】據國外媒體報導,出於某些原因,當我們談及恒星、星系和宇宙的年齡時,通常使用“年”進行測量和描述,我們是否有更好的方法來測量宇宙時間?

現今,我們可以追溯138億年前發生的大爆炸事件,觀測到宇宙體積延伸至461光年,但是像“年”和“光年”這樣的時間計算單位不僅是完全隨意、以地球為中心,並且從地球歷史上講,這些時間計算單位甚至沒有一致的定義。也許有更好的方法來測量時間,尤其是對宇宙而言,但每種方法都存在著缺點。

關於宇宙,我們可以提出許多宏觀的問題,但這是人類歷史上最令人費解的謎團之一,例如:“宇宙是什麼?宇宙有多大?它是永恒不變的,還是突然形成的,如果是的話,是什麼時候誕生的?”這些問題曾是哲學謎團之一,但過去100年提供了堅定的科學答案。現今基於先進的天文勘測設備,我們知道宇宙是什麼,但迄今我們所觀測的僅是直徑922億光年宇宙的一小部分;我們知道大爆炸事件,這是宇宙開始的標誌性事件,大約發生在138億年前,但準確的發生時間仍有1%的不確定性。

然而,為什麼我們測量宇宙時間和距離的所有方法都使用以地球為中心的單位呢?例如:“年”和“光年”,難道沒有一種更好、更客觀、更普遍的方法來實現嗎?答案是肯定有的,至少科學家傑瑞·貝爾(Jerry Bear)是這樣認為的。

貝爾指出,為什麼宇宙學計算,例如:宇宙年齡和大小,要廣泛地使用狹隘的、與 “年”相關的參數呢?客觀地講,將地球一年的時間概唸作為一種宇宙衡量標準是較狹隘的,光年這個概念僅與宇宙區域測量有關。

以上測量標準都是很好的觀點,但我們需要進一步擴展和思考,尋找一些替代性標準,讓我們來看一下測量宇宙時間背後的科學吧!

在地球上,只有兩種方法來理解時間流逝的概念,這兩種方法都是利用定期重現的現象,這些現象不僅對人類活動至關重要,而且對所有生物活動都至關重要,在較短的時間尺度上,我們有“天”的概念,這是很重要的,原因如下:

一天標誌著日出和日落,大致與地球繞地軸一個完整自轉週期相對應,同時,一天的時間與大多數植物和動物經曆晝夜活動和休眠的時間相對應,所有這些現象都在接下來的一天時間內重復出現,在接下來的幾天里,或許會出現實質性差異,如果我們等待的時間足夠長,這些差異就會重復出現,在一年時間里,日子會以各種方式發生變化,其中包括:日出和日落的時間提前和延遲,白天時間的增加和減少,太陽在地平線之上的最大高度和最小高度,以及季節變化週期、植物和動物生活週期等。但從一年的時間角度來講,幾乎沒有變化,幾年內重複循環出現。

基於以上分析,我們就很容易理解為什麼人們會提出一些基於“日”和“年”等概念的計時系統,因為我們在這顆星球上的活動與這些週期性循環密切相關。但通過仔細觀察,出於各種原因,我們在地球上所經曆的日和年的概念並不能很好地轉化為一組標記時間流逝的通用公式。

首先,在地球歷史上,一天的持續時間已經生了巨大變化,當月球、地球和太陽相互作用時,潮汐摩擦現象會導致一天的時間變長,月球會以螺旋方式逐漸遠離地球,大約40億年前,地球的“一天”時間僅持續6-8個小時,一年有1000多天。

然而,一年的變化,或者說地球繞太陽公轉一週所需的時間,縱觀太陽系歷史僅存在少許變化。變化的最大因素是太陽質量改變,迄今為止,太陽已損失了相當於土星的質量,該變化將促使地球被推向距離太陽更遠的區域,並導致它的軌道運行速度隨著時間推移略慢一些,這將導致一年的時間變長,但僅是略微延長——大約延長萬分之二,這相當於從太陽系誕生至今,一年的時間延長了大約2個小時。

但是為什麼我們要將地球的計時概念延伸應用於整個宇宙,以及將其他星系中行星環繞主恒星的任意運動聯繫起來呢?這是不客觀的,也不是絕對的,而且除了以地球為中心的計時標準之外,再也沒什麼用。天和年都不是普遍適用宇宙的時間度量單位,光年和秒差距(或者相關單位,例如:千秒差距、百萬秒差距或者兆秒差距)都不是普遍適用的距離度量單位。

有趣的是,有一些方法可以更客觀、理物理地定義時間,而且它們不會像以地球為中心的定義那樣存在缺陷,但是我們也有一些很好的理由不使用這些時間度量,因為每一個度量都有其優點和缺點,如果你要對某種方法使用進行論證的話,以下有一些可以考慮的選擇,人們可以從太陽系歷史角度進行分析,判斷這些方法是否比現在以年為基礎(實際上是以地球為中心的計時標準)的計時系統更好或者更差。

即使太陽系發生了複雜的天體物理變化,地球一年的持續時間仍可能是一種有效且穩定的衡量標準,我們可以使用該計時標準確定與地球相關的時間計數。由於光速是一個已知且可測量的常數,因此“光年”就作為一個推導出來的距離單位出現了,而且隨時間變化光年的計時標準僅發生很小變化,在過去數十億年的時間里,準確率一直保持在99.98%左右。

有時,我們會使用另一個重要計時定義,雖然它是間接的,但也是基於地球環繞太陽運行一年的定義——秒差距,它不是僅基於時間,而是基於天文角度和三角學原理。當地球環繞太陽運行,相對一顆“未移動恒星”的視位置,就出現了位置變化,人們可以做一個簡單的測試——只睜開左眼,然後交替睜開右眼,就會發現較近的物體相對於較遠的背景物體會出現“位移”。

在天文學領域,我們稱該現象為“視差”,我們使用地球相對於太陽位置的最大距離來代替人類左右眼之間的距離,地日軌道直徑大約3億公里,一個天體相對於遙遠背景移動1弧秒(1/3600度),將被定義為一個秒差距:大約3.26光年。以下是“脫離地球”的幾種宇宙計時系統:

1、普朗克時間

你是在尋找一個除宇宙基本常數之外不依賴任何規律的時間定義嗎?如果取三個最基本、可測量的自然常數,你可能會考慮到普朗克時間。

萬有引力常數G,光速c,以及量子常數(即簡化的普朗克常數)h,將它們結合起來,就可能得出一個基本的時間單位。雖然這對應於一個有趣的宇宙範圍,因為該等級的量子起伏不會形成粒子/反粒子成對化,但對於黑洞則不同,目前沒有相關的物理過程對應於黑洞的時間變化。普朗克時間非常小,這意味著我們甚至需要天文數字等級的普朗克時間來描述亞原子過程,例如:頂夸克,這是目前已知壽命最短的亞原子粒子,其衰變時間大約10^18普朗克時間,一年的時間相當於10^51普朗克時間,這一時間標準並沒有什麼“錯”,但它確實不符合直覺。

2、原子鐘

這是一個有趣、但令人不易接受的事實:所有關於時間、質量和距離的定義都是“非常隨意”的,1秒、1克、1公斤或者1米,都沒有實質意義,我們只是選擇這些價值標準作為人們日常生活中使用的規範常數。然而,我們確實有一些方法可以將這些選擇的量聯繫起來——通過三個基本常數萬有引力常數G,光速c,以及量子常數h,我們用它來定義普朗克時間,如果你對時間或者距離進行定義,例如:光速可以作為另一種衡量單位。

那麼,為什麼不選擇一個特定的原子躍遷來定義時間和距離呢?在原子躍遷過程中,電子從一個能級降至另一個能級,並釋放特定頻率和波長的光線,以此來確定時間和距離範圍。頻率僅是一個反比延時概念,所以人們能通過測量一個波長光線經過的時間來獲得一個“時間”單位,同時,可以通過波長定義“距離”,這就是原子鐘的工作原理,它也可以用於定義秒和米。

但這是一個任意定義,許多時間變轉太快,其時間間隔太小,不適用於日常的計時標準。例如:現代科學界對秒的定義是:一個銫-133原子超精細結構釋放的光子在真空中9192631770個波長週期。

3、哈勃時間

如果我們從另一個角度出發,而不是使用基於量子特性的更小常數,上升至宇宙尺度等級,將會怎樣呢?宇宙以特定的速率膨脹——宇宙膨脹率,該指數經常被稱為哈勃參數或者哈勃常數。雖然我們通常將它描述為一種速度-距離單位,例如:哈勃常數描述為“71 km/s/Mpc”,它也可以簡單地描述為一種逆比時間:2.3 × 10^-18逆秒,如果我們將其轉換為時間,就會得到一個計時單位——“哈勃時間”,相當於4.3 × 10^17秒,大約是宇宙自大爆炸以來的年齡。

如果我們使用光速來計算哈勃時間,就會得出“哈勃距離”為1.3 × 10^26米,或者說是137億光年。這是一種宇宙宏觀參數,我們可以使用距離單位和時間單位來研究真正意義上的宇宙尺度。

不幸的是,這樣存在一個大問題:哈勃常數並不是一個隨時間變化的常數,而是隨著宇宙年齡的增長,以一種複雜的方式不斷下降,具體取決於宇宙中所有不同成分的相對能量密度。

4、氫原子自旋翻轉躍遷

長期以來,我們試圖尋找一個更好的宇宙時間定義,有一種方法值得考慮:整個宇宙中最常見的量子躍遷。無論任何時候形成的中性氫,它的形成都是一個電子結合在原子核上,而原子核幾乎總是一個單獨、裸露的質子,當電子到達基態時,相對於質子的構型將出現兩種可能性。

電子或者質子要麼反方向量子自旋,即其中一個自旋+ 1 / 2,另一個就是自旋-1 / 2;要麼就是同方向量子自旋,即電子和質子都是自旋+ 1 / 2或者自旋-1 / 2。如果自旋是反向排列,那麼就處於最低能態;如果自旋是正向排列,那麼電子旋轉就有一定概率是自發翻轉,釋放一個特定頻率的獨特光子,該頻率為1420405751.77赫茲。

有趣的是,氫原子自旋躍遷速率較慢,相當於2.9× 10^-15逆秒,如果我們將它轉換成宇宙時間和宇宙長度標準,就相當於1090萬年和1090萬光年,相當於大約330萬秒差距。 #媒体手记#

【如何“脫離地球”更精確地測量宇宙時間?】據國外媒體報導,出於某些原因,當我們談及恒星、星系和宇宙的年齡時,通常使用“年”進行測量和描述,我們是否有更好的方法來測量宇宙時間?

現今,我們可以追溯138億年前發生的大爆炸事件,觀測到宇宙體積延伸至461光年,但是像“年”和“光年”這樣的時間計算單位不僅是完全隨意、以地球為中心,並且從地球歷史上講,這些時間計算單位甚至沒有一致的定義。也許有更好的方法來測量時間,尤其是對宇宙而言,但每種方法都存在著缺點。

關於宇宙,我們可以提出許多宏觀的問題,但這是人類歷史上最令人費解的謎團之一,例如:“宇宙是什麼?宇宙有多大?它是永恒不變的,還是突然形成的,如果是的話,是什麼時候誕生的?”這些問題曾是哲學謎團之一,但過去100年提供了堅定的科學答案。現今基於先進的天文勘測設備,我們知道宇宙是什麼,但迄今我們所觀測的僅是直徑922億光年宇宙的一小部分;我們知道大爆炸事件,這是宇宙開始的標誌性事件,大約發生在138億年前,但準確的發生時間仍有1%的不確定性。

然而,為什麼我們測量宇宙時間和距離的所有方法都使用以地球為中心的單位呢?例如:“年”和“光年”,難道沒有一種更好、更客觀、更普遍的方法來實現嗎?答案是肯定有的,至少科學家傑瑞·貝爾(Jerry Bear)是這樣認為的。

貝爾指出,為什麼宇宙學計算,例如:宇宙年齡和大小,要廣泛地使用狹隘的、與 “年”相關的參數呢?客觀地講,將地球一年的時間概唸作為一種宇宙衡量標準是較狹隘的,光年這個概念僅與宇宙區域測量有關。

以上測量標準都是很好的觀點,但我們需要進一步擴展和思考,尋找一些替代性標準,讓我們來看一下測量宇宙時間背後的科學吧!

在地球上,只有兩種方法來理解時間流逝的概念,這兩種方法都是利用定期重現的現象,這些現象不僅對人類活動至關重要,而且對所有生物活動都至關重要,在較短的時間尺度上,我們有“天”的概念,這是很重要的,原因如下:

一天標誌著日出和日落,大致與地球繞地軸一個完整自轉週期相對應,同時,一天的時間與大多數植物和動物經曆晝夜活動和休眠的時間相對應,所有這些現象都在接下來的一天時間內重復出現,在接下來的幾天里,或許會出現實質性差異,如果我們等待的時間足夠長,這些差異就會重復出現,在一年時間里,日子會以各種方式發生變化,其中包括:日出和日落的時間提前和延遲,白天時間的增加和減少,太陽在地平線之上的最大高度和最小高度,以及季節變化週期、植物和動物生活週期等。但從一年的時間角度來講,幾乎沒有變化,幾年內重複循環出現。

基於以上分析,我們就很容易理解為什麼人們會提出一些基於“日”和“年”等概念的計時系統,因為我們在這顆星球上的活動與這些週期性循環密切相關。但通過仔細觀察,出於各種原因,我們在地球上所經曆的日和年的概念並不能很好地轉化為一組標記時間流逝的通用公式。

首先,在地球歷史上,一天的持續時間已經生了巨大變化,當月球、地球和太陽相互作用時,潮汐摩擦現象會導致一天的時間變長,月球會以螺旋方式逐漸遠離地球,大約40億年前,地球的“一天”時間僅持續6-8個小時,一年有1000多天。

然而,一年的變化,或者說地球繞太陽公轉一週所需的時間,縱觀太陽系歷史僅存在少許變化。變化的最大因素是太陽質量改變,迄今為止,太陽已損失了相當於土星的質量,該變化將促使地球被推向距離太陽更遠的區域,並導致它的軌道運行速度隨著時間推移略慢一些,這將導致一年的時間變長,但僅是略微延長——大約延長萬分之二,這相當於從太陽系誕生至今,一年的時間延長了大約2個小時。

但是為什麼我們要將地球的計時概念延伸應用於整個宇宙,以及將其他星系中行星環繞主恒星的任意運動聯繫起來呢?這是不客觀的,也不是絕對的,而且除了以地球為中心的計時標準之外,再也沒什麼用。天和年都不是普遍適用宇宙的時間度量單位,光年和秒差距(或者相關單位,例如:千秒差距、百萬秒差距或者兆秒差距)都不是普遍適用的距離度量單位。

有趣的是,有一些方法可以更客觀、理物理地定義時間,而且它們不會像以地球為中心的定義那樣存在缺陷,但是我們也有一些很好的理由不使用這些時間度量,因為每一個度量都有其優點和缺點,如果你要對某種方法使用進行論證的話,以下有一些可以考慮的選擇,人們可以從太陽系歷史角度進行分析,判斷這些方法是否比現在以年為基礎(實際上是以地球為中心的計時標準)的計時系統更好或者更差。

即使太陽系發生了複雜的天體物理變化,地球一年的持續時間仍可能是一種有效且穩定的衡量標準,我們可以使用該計時標準確定與地球相關的時間計數。由於光速是一個已知且可測量的常數,因此“光年”就作為一個推導出來的距離單位出現了,而且隨時間變化光年的計時標準僅發生很小變化,在過去數十億年的時間里,準確率一直保持在99.98%左右。

有時,我們會使用另一個重要計時定義,雖然它是間接的,但也是基於地球環繞太陽運行一年的定義——秒差距,它不是僅基於時間,而是基於天文角度和三角學原理。當地球環繞太陽運行,相對一顆“未移動恒星”的視位置,就出現了位置變化,人們可以做一個簡單的測試——只睜開左眼,然後交替睜開右眼,就會發現較近的物體相對於較遠的背景物體會出現“位移”。

在天文學領域,我們稱該現象為“視差”,我們使用地球相對於太陽位置的最大距離來代替人類左右眼之間的距離,地日軌道直徑大約3億公里,一個天體相對於遙遠背景移動1弧秒(1/3600度),將被定義為一個秒差距:大約3.26光年。以下是“脫離地球”的幾種宇宙計時系統:

1、普朗克時間

你是在尋找一個除宇宙基本常數之外不依賴任何規律的時間定義嗎?如果取三個最基本、可測量的自然常數,你可能會考慮到普朗克時間。

萬有引力常數G,光速c,以及量子常數(即簡化的普朗克常數)h,將它們結合起來,就可能得出一個基本的時間單位。雖然這對應於一個有趣的宇宙範圍,因為該等級的量子起伏不會形成粒子/反粒子成對化,但對於黑洞則不同,目前沒有相關的物理過程對應於黑洞的時間變化。普朗克時間非常小,這意味著我們甚至需要天文數字等級的普朗克時間來描述亞原子過程,例如:頂夸克,這是目前已知壽命最短的亞原子粒子,其衰變時間大約10^18普朗克時間,一年的時間相當於10^51普朗克時間,這一時間標準並沒有什麼“錯”,但它確實不符合直覺。

2、原子鐘

這是一個有趣、但令人不易接受的事實:所有關於時間、質量和距離的定義都是“非常隨意”的,1秒、1克、1公斤或者1米,都沒有實質意義,我們只是選擇這些價值標準作為人們日常生活中使用的規範常數。然而,我們確實有一些方法可以將這些選擇的量聯繫起來——通過三個基本常數萬有引力常數G,光速c,以及量子常數h,我們用它來定義普朗克時間,如果你對時間或者距離進行定義,例如:光速可以作為另一種衡量單位。

那麼,為什麼不選擇一個特定的原子躍遷來定義時間和距離呢?在原子躍遷過程中,電子從一個能級降至另一個能級,並釋放特定頻率和波長的光線,以此來確定時間和距離範圍。頻率僅是一個反比延時概念,所以人們能通過測量一個波長光線經過的時間來獲得一個“時間”單位,同時,可以通過波長定義“距離”,這就是原子鐘的工作原理,它也可以用於定義秒和米。

但這是一個任意定義,許多時間變轉太快,其時間間隔太小,不適用於日常的計時標準。例如:現代科學界對秒的定義是:一個銫-133原子超精細結構釋放的光子在真空中9192631770個波長週期。

3、哈勃時間

如果我們從另一個角度出發,而不是使用基於量子特性的更小常數,上升至宇宙尺度等級,將會怎樣呢?宇宙以特定的速率膨脹——宇宙膨脹率,該指數經常被稱為哈勃參數或者哈勃常數。雖然我們通常將它描述為一種速度-距離單位,例如:哈勃常數描述為“71 km/s/Mpc”,它也可以簡單地描述為一種逆比時間:2.3 × 10^-18逆秒,如果我們將其轉換為時間,就會得到一個計時單位——“哈勃時間”,相當於4.3 × 10^17秒,大約是宇宙自大爆炸以來的年齡。

如果我們使用光速來計算哈勃時間,就會得出“哈勃距離”為1.3 × 10^26米,或者說是137億光年。這是一種宇宙宏觀參數,我們可以使用距離單位和時間單位來研究真正意義上的宇宙尺度。

不幸的是,這樣存在一個大問題:哈勃常數並不是一個隨時間變化的常數,而是隨著宇宙年齡的增長,以一種複雜的方式不斷下降,具體取決於宇宙中所有不同成分的相對能量密度。

4、氫原子自旋翻轉躍遷

長期以來,我們試圖尋找一個更好的宇宙時間定義,有一種方法值得考慮:整個宇宙中最常見的量子躍遷。無論任何時候形成的中性氫,它的形成都是一個電子結合在原子核上,而原子核幾乎總是一個單獨、裸露的質子,當電子到達基態時,相對於質子的構型將出現兩種可能性。

電子或者質子要麼反方向量子自旋,即其中一個自旋+ 1 / 2,另一個就是自旋-1 / 2;要麼就是同方向量子自旋,即電子和質子都是自旋+ 1 / 2或者自旋-1 / 2。如果自旋是反向排列,那麼就處於最低能態;如果自旋是正向排列,那麼電子旋轉就有一定概率是自發翻轉,釋放一個特定頻率的獨特光子,該頻率為1420405751.77赫茲。

有趣的是,氫原子自旋躍遷速率較慢,相當於2.9× 10^-15逆秒,如果我們將它轉換成宇宙時間和宇宙長度標準,就相當於1090萬年和1090萬光年,相當於大約330萬秒差距。 #媒体手记#


发布     👍 0 举报 写留言 🖊   
✋热门推荐
  • 《一叶茶,千夜话》共六集,讲述了30个故事,通过茶这面棱镜,探讨人与自然的深刻联系,以及探寻茶为何能够在中国传统、人生态度、友情和家庭当中占据核心的地位。未来,
  • 【聚焦大会 | 凝聚潮人力量 擦亮潮商品牌 深圳历次潮商大会回顾】作为全球潮商联络感情、交流合作的重要平台,深圳潮商大会自2006年创办以来,已成功举办七次,充
  • [赢牛奶][赢牛奶][赢牛奶] 特战队员/军训教官/抗疫志愿者,一起了解这位上电斜杠青年[打call]他是身着军装的特战队员,也是身披“大白”奋战抗疫一线的志愿
  • 所以在1110之前,環境會是:「伊西斯壹世壞」v.s. 反「伊西斯壹世壞」雷精靈雖然沒了餅蛙,但是壹世壞都有新卡了,沒道理雷精靈沒有。但是60張終究是肥了點,不
  • #afu的未定日记# 为了一周年的亲亲卡已经把我榨干了不过出货的时候是个双黄蛋very nice,忘了太激动忘了截图了希望二周年来临的时候我可以欧一点,早一点出
  • 最开始吸引我的是文案里的这段话,看到这才懂得这段话的涵义——“命运要我一生都守在这里,可这并非是我抉择的那一条路,黄沙淹没了我的手足,我不想再臣服于虚无的命,圣
  • 可能只是水肿了女明星都在喝的宝藏玉米须茶让你一秒钟爱上喝水纯天然去湿气~消水肿~这个夏天一起瘦瘦2-5天发,消水肿神器!可能只是水肿了女明星都在喝的宝藏玉米须茶
  • #丁禹兮[超话]#dyx#丁禹兮春闺梦里人#dyx#丁禹兮电影十年一品温如言# 果然,小丁的采访从不会让我们失望~这次给我印象最深的一个点是“一个人的想法改
  • 持诵大悲咒得十种利益:能得安乐,除一切病,延年益寿,常得富饶,灭一切罪,永离障难,增诸善德,远离怖畏,成就一切善根,随愿往生诸佛刹土。持诵大悲咒得十种利益:能得
  • 上市公司的签单情况也反映出这一趋势,3月初,双良节能与晶盛机电签订买卖合同,向后者采购直拉单晶炉,将应用于公司大尺寸单晶硅片项目。2月初,由兰石重装研制的青海亚
  • 当然,这场比赛对手的实力比较一般,光从这场比赛看不出RNG的极限在哪里,单纯的虐菜局,估计外卡兄弟都要被虐出阴影了。而DFM这里下路伊泽瑞尔和卡尔玛必然要打压制
  • 目前,8家虚拟银行已经全部投入运营,近日,香港金管局总裁余伟文公开表示,8家虚拟银行开户数目已达到58万,存款总额近200亿港元。目前,8家虚拟银行已经全部投入
  • 春从来不语,却温柔了世界;花从来不言,却芬芳了人间。——辛弃疾#给刘宇宁的春日明信片#✨#凝聚V力量#✨#摩登兄弟[超话]# 总觉得世人皆爱花,爱其浓烈绽放,
  • #康平路扩关[超话]# 滴滴滴〰️〰️〰️向你袭来的是一辆高质量Kgc车主@和诺诺的四季浪漫 竞有且只有一诺初晨 久诚 详情见P1VIP观光席@·柒枂酒neb
  • 坐在窗口吹着微凉的夜风想起去年买的新毛衣还没穿几次就被我洗缩水只能默默拿去二手店和它说再见送句歌词吧あんな時代もあったねときっと笑って話せるわだから今日はくよく
  • 希望你也是甜心教主哈哈哈哈God bless us紧急提醒:距离母亲节还有1天❗️妈妈们的贴心小棉袄们,礼物都准备好了吗还没准备好的看这里哦⬇️可以喝的胶原蛋白
  • #阿布决定出售切尔西#有些球员是有切身利益关系发声那也是应该的,你足总什么的就别掺和了,美军在中东的时候也没见你们stand with Iraq,stop it
  • 据Tom Henderson透露,Volition将会在6月9日的夏日游戏节上发布名为“Boss工厂”的捏人小游戏,届时玩家将可直接免费下载这个游戏;它是一个自
  • 我们终将在滚滚红尘里老去,只希望在苍老了容颜,掉光了牙齿的那刻,有你在身边,不需甜言,不需蜜语,只要看着时光的脚步在你脸上留下的痕迹,便是一种莫大的幸福。一笺素
  • 我一个酷爱香水的闺蜜问我哪找的这么有质感的香水哈哈,完全不信我抹得是身体乳!我表姐,一个酷爱旅游的读书人,最近几年格外喜欢香水,无论是诗词还是香水研究的都非常深